eSeGeCe

SOFTWARE

sgcWebSockets 2025.1

January 2025

Documentation for Delphi

Copyright © 2012-2024 eSeGeCe Software

info@esegece.com
www.esegece.com

https:#nogo

SGCWEBSOCKETS

Contents

Lo To [Tl oo o N 18

L0 3= VTN 22
B ITIONS e e st r e re e nnes 22
INSEAHATION e st sr e 24

L T = | N 27
INSTAI SEEUD 1ottt et e b e e b e e be e beebeebeesseenseenseenseens 27
INSTAIl PACKAEE ..ottt e et e e te e be s beebeeaeebeenreens 38
INSEAIT EF OIS ettt sttt et ettt sbe et e sbe e st e besbeesbesbesanennes 45
(@o] o)1 ={ U= [13 = | | USROS 49
INStall SECINAY PACKAEZEcviiiecieceeeee ettt et saeeaeenreen 51
CONTIGUIE ZLID ettt ettt et e b e e be et e e sbeesaeesseesanesanenseas 57

[0 T T Tof 1] - 1 o S 58
OVEIVIEBW .ttt sb e sb e sb e sbeesaeesbeesnees 58
QUICKSTAIT WEDSOCKELS .eviiiiiiiiei ettt ettt ce st e e e sbare e e esabaeeeeeesbaeeeseennes 60
QUICKSTAIT HTTP oottt ettt e et e ebar e e e esabe e e e eesabbseeeeeesabaeeeeessbaeeesennnes 62
TREEAAING FIOW ..ttt st sttt st s e st st e st e e beebeesbeenbeens 64
BUII ettt h e s b ettt et beene e 66
BUild OSX APPIICATION 1.ttt st 67
Build ANAroid APPHCAtION ..ceeeieeiieieeeeeeee e 69
BUIld IOS APPIICATION et 70
FASt PerfOrmManCe SEIVEN ..ottt s s s 72
MEMOIY MANAEZETcoviiiiiiiiiiiiiiii bbb e sb e sae e saneeeas 75
OPENSSL .ttt 78
OPENSSL WINGAOWS ..cuiitierieeieeeesee ettt sttt sttt st sae st sbe e s saeenesneeseenee 80
OPENSSL OSX ittt ettt ettt b ettt s b st sb e st s b et e b et et et et et et et e st et e aeeaeens 82

SGCWEBSOCKETS

TOPICS ceveeieiiiiiiiiinniiiinnnnnneeetttiessansssssssssss 93
WEDSOCKET EVENES ...ttt sttt st sttt st 93
WebSocket Parameters CONNECLIONcoviiriirierierterte ettt 94
USING INSIAE @ DLL .ttt sttt ettt be b ens 95
WED BrOWSEE TEST ...ttt sttt st sttt st st st st e e abeebesbeenneens 96
CUSTOM SUD-PIrOtOCOIS ..c.uiiiieieeieeeeeeee ettt s s saees 97
AULNENTICATION 1ttt sttt st et st 100
Y <Tel8 g @] o] o [<Taia (o] o K- PP PSPPSR PP PR PPPRPRN 102
HEAIBEAT ... ettt st st s s saneas 104
WATCNDIOZeeeieieiteee ettt sttt s e s bt e sbe e sat e satesatesat e st e eatesateeanes 105
[0 =4SSO PRSP PPRRPPRP 106
[I 1 O OO PO PP UPOTTOTPPPRROP 107
Broadcast and Channelsooioiiiioi e 108
BINAINES ettt sttt st sttt e b et eates 109
POST BIZ FIlES .ttt st sttt st 110
(@] 0 0] o1 <1S7S] (o] o FA R PSPPSR PR PUROPRRPR 112
FLASI ettt st st sttt aees 113
CUSTOM ODJECES ettt ettt ettt e sb e sbe e b e sbeesbeesbeesbeens 114
(G001 o1 TSP R PP PPN 115
TOCP ettt e s e st e b e e st e e et a e e s bt e e e s baee s abaeeebaaeenbaeeenaraeas 117
EPOLL. ettt st e et e st e e s b e e e st b e e st e e e s baaeenabaeeennraeas 118
ALPN ettt e e e st e e e s et bt e e e s e bt e ee e e e baeeeeeesrrraeeeaans 119
FOrward HTTP REQUESTScoiuiiiieiieeiereeeite sttt sttt st st st st st 120
QUANTLY OF SEIVICE ...ttt sttt st st sae et s b st e nbesbeesenaes 121

SGCWEBSOCKETS

TCP CONNECLIONS ittt sbe e st sbe e sane st e sabesanesatesanes 126
SUDPIOTOCO! ..ttt sttt b e et nbe st nes 127
TIEOTEIE et sttt st sttt r e 128
SEIVEI-SENT EVENTS ..ottt 129
LOAABAIANCING .eiuvieiieiieiestertestese ettt st st st st st st st saa e st e estesaaesanesanes 131
LS e bbbt b e bbb ae b e be e e b e 132
P OXY ettt st e e e st e st e e e bt e e e e b b e e st e e e e bbeesearaeesnnraeas 133
Fragmented MESSAZEScccvevierierierieriteniie sttt sttt st st st st sate st e saaesssesatesanesanes 134
L0007 4 10 To T 4 1T 3 | 135
TSECWEDSOCKETCHENT ... ettt ettt sttt st s st e 135
CoNNECt WEDSOCKET SEIVEN ...t 141
Client OPeNn CONNECLION ..eevuieiierieeeeete ettt sb e sbe e b e sbeesbeesbeesbeens 142
Client ClOSE CONNECLION ...iiiiiiieiieeiie ettt ettt et be e b e sbeesbeesbeesbeens 144
Client Keep CONNECLION OPEN ..cuiiiiiiiieiieeiteeteete ettt ettt sbeesbeesbeesaeens 145
Dropped DiSCONNECLIONS. c..civiiiiieiieeiterte ettt sttt st sttt st sateeaees 146
CONNECE TCP SEIVEN ettt ettt et e st e b e e s ar e e sane e snneenee 147
CONNECLIONS TIME _WAIT ottt ettt et e e e e eeteaareeeseee st ssaasssseesssssrannssesseee 148
WebS0ocket REAINECHIONS.....iiiiiiieiieeeeee ettt st 149
CONNECT SECUIE SEIVET ittt ettt st e st e b e e s b e saneesnneenee 150
CertifiCates OPENSSLa...iiiiiiiiiieeieieseee ettt s st et sbe s et saeesenaes 151
CertifiCates SCRANNEL.....c.oiiiieiceeee et st aes 152
SChannel Get CoNNECLION INFO ..ioiiviiiiiieeeeeee e 154
Client SENA TEXE MESSAEEeoiiiiiieiieete ettt ettt be e b sbeesbeesbeesbeens 155
Client SENd BiNAry IMESSAZE.......couiiiirieriieteete ettt ettt ettt sbe e b sbeesbeesbeesaeens 156
Client Send Text and BiNary MESSAEEccuevueriiriieriieeieeieeieeee sttt 157
RECEIVE TEXE MESSAEES ...eeeiieiiiieiieeette ettt sttt st s b e b e s b e sanees 158
RECEIVE BINArY IMESSAZESeeiiuiiiiiieiiieeieeetee ettt sttt st e s e s b e sanees 159

Gl N AU ONTICATION ettt e e et e e e e e e e e eeae e eeeesseeeeannnaaessessennnnaaaeeeaane 160

SGCWEBSOCKETS

CHENT EXCEPLIONS c.vtitteiieriteeiteste sttt sttt st st st e b e e ae e be e beesbeesbeesbaenbaenseenseensnens 162
Client WebSocket HaNASNAKEeccooiiiiriirieeeeee s 163
Client ReZISter ProtOCOLiiiiiiiriiciesieceeteeteee ettt be e s esane s 164
ClIENT PrOXIES ..ttt sttt ettt sae et sse et esb e et esbesaeennenes 165
TSECWEDSOCKEESEIVEL ...eiiiieiieeeeeeeee et s st s ae s aesanesanes 166
SEIVEE STAIT ottt 173
SIVEE BINAINES..eitiiriiiitieriienierte sttt sttt sttt st sttt e et e e be e beesbeesbeesbeesseenseenbeessnans 174
Server Startup SNULAOWNooiiviiiececeeteee et sae e b s beesbeesanens 175
SEIVEE KEEP ACHIVE ..ottt sttt sttt ettt et e st e e s be e st e e sab e e sabeesabeesaseesaseennne 176
SEIVEE SSLiiiiiiee e 177
Server Verify CertifiCate .. saae s 179
Server Keep CoNNECLIONS AlIVEocuiviiiiieiieieciece sttt sbeesaeesane s 180
SEIVEY PlAIN TCP ettt sttt sttt sb e et nbesae e nnes 181
Server CloSe CONNECTION ..cviiiirierieierteterte ettt sttt sb et s nennes 182
ClIENt CONNECLIONS ..ottt ettt s ae et st sb e e e b saeennennes 183
Server AULNENTICAtION .. .ottt 184
Server SENA TEXt IMESSAZEcvviriiriirierite ettt ettt sttt e e ste e te e beesbeesbeesbaesseesseesbeessnens 185
Server Send BiNAry MESSAEEcoviviiriiriiinieeiesiesie st steesteesteesteesteesteesseesaaesseesseesseessnens 186
Server RECEIVE TEXE MESSAEZ......uuiiiiiiiiriierieeeiee sttt sre e s teesate e sabeesbeesareesaseesaseeene 187
Server Receive BiNary MESSAZEuiiiiiriiirieenieenteestee sttt sreesse e sreesre e sareesaseesaseennne 188
Server Read Headers from ClIeNt.......voeeverierineeieseeeeseeee et 189
TSECWEDSOCKEtHTTPSEIVEL ..ottt st st saae b s 190
HTTP SEIVEI REQUESTSeeieiiiieeitee ettt ettt ettt e st e s e e s bbeesennaeesnneeas 194
HTTP DIiSPAtCN FIlES..ccuuiiiiiiiiiiieieeteeese sttt st st st sttt sane s 195
HTTP/Z2 SEIVEI .ttt bbb s 196
HTTP/2 SEIVEE PUSK vttt sttt s 197
HTTP/2 AItEINATE SEIVICO ..ottt st s 199
HTTP/2 SErver TRIEAUS. ...c.eeitieiieieteeterteeteeste ettt ettt s 200
HTTP 404 Error without ReSpONSe BOAYcccuevieriiniiniinienieciesteste e 202
HTTP SEIVEI SESSIONS ..ottt st st st s s s 203

HTTP SIVEE SErEAM VIO oottt snenas 205

SGCWEBSOCKETS

TsgCWebSoCKetServer_HTTPAPL ...ttt sttt s sane s 206
HTTPAPI URL RESEIVATION ..coviiiiiiiiiiiiiiieiiesitesiteteste sttt st 210
HTTPAPT SEIVEE SSL..uiiiiieiieiieieeieeieetesteste ettt st s st sttt 212
Self-SigNed CertifiCateS ...t be e s beesane s 213
HTTPAPI DiSabIe HTTP/2 ..ottt sttt 214
HTTPAPI CUSTOM HEAARIS.....iiieieiieteiesieeterteete ettt sttt 215
HTTPAPI SENA TEXE RESPONSEeiiieiieriieriierite sttt sttt sttt ssaesaaesaaesaesaaesanes 216
HTTPAPI SeNd File RESPONSE ..c.uviviieiiiriiiciieseesteseste ettt st st st 217
HTTPAPI ONDiscONNECt NOL fIr€d ...eoueeveriieierieeiieiesieeteeieeese et s 218
TsgcWebSocketCHENt_WINHTTPcoiiiiiieieiecteseenee st s 219
TsgcWebSocketLoadBalanCerSerVer. ...ttt 222
TSECWEDSOCKEEPIOXYSEIVET ...ccuiiiiiiieeieeeereee ettt st st s s st s saesanesanes 224
TSECIWWEDSOCKETCIENT ...vveeiieeiecieeeee ettt s saesaaesaaes 225
TSECWSCONNECHION .. ttieteeeiteeieeeiee ettt sttt st sate e sateesabeesabeessbeessseesaseesasesssseessnesseenns 227
PPOTOCOIS ettt st b et bbbt e st e s bt e e s beeneene e 229
ProtOCOIS JAVASCIIPT.ccuiiiierieitesterteste ettt st st st saaesatesaaesanesaees 231
[e) (o Talo] I\, (@ 1 I OO 234
TSECWSPCHENT_MQTT ciiiiieeieeieeieesieesie ettt ettt st e saaesaa e saeesasesasesanesanesaaesasesnnes 236
ClIeNt MQTT CONNECE ccuutiiiiiiitriiie ettt e et e e e e esabb e e e e s esabbreessssbbaeeesssaraeeeeas 242
Connect MosqQUItto MQTT SEIVEIS ...cuuiieiierieeeieesieertee sttt sabe e 243
ClIeNt MQTT SESSIONS ..uvvviiiiiiiiiiie ettt eetee e eerar e e e s esbr e e e e e esbbreeeeesbbreeesessaraseessessrreeeeas 244
ClIeNt MQTT VEISION oottt ettt ee e e s esatr e e e s esabb e e e e s esabaseessessabaeeessearaneeeas 245
MQTT PUDBIISN SUDSCIIDE .t 246
IMQTT TOPICS veeeuveeeieeeieeeieestee st e st sre e sbe e st esbeesabeesabe e s bt e sabeessbeesabeesabeesasaesaseesasaessseesasees 247
MQTT SUDSCIIDE .t erba e s e esab e e s esabb e e e e sesaraeeessensnanes 248
MQTT PUDBIISN MESSAEE ..coviiiiieiiiieceecesesesesee ettt st st st 249
MQTT RECEIVE IMESSAZRS ..cuveeiieeriieeetiesieeertestee st e st e s bt esbeesbeesbeesbeesbaessbeesasaessseesasees 250
MQTT Publish and Wait RESPONSEooviviiriirieriestese st 251
MQTT Clear RetaiNed MESSAZES.cccuvriiriirierieniesie e stesteste st st saessressaesseseesssesaees 252
g e) (o Talo] 12X 1Y (@ 1 =S 253
TSECWSPCHENT_AMOQP....eiiieeieeieeieeeese ettt ettt saeesaa e saaesasesasesasesasessaesanesnnas 254

ClieNt AMQP CONNECE cuvviiiiiiiiieiie ettt eerbr e e et e e e e s esbbeeeesesbbaeeesssarreeeeas 257
ClieNt AMQP DiSCONNECT....ciiiiriiieiieciieieeeecteeee et eesbr e e eesabr e e e e ssbbeeessesabareessesaraeeeeas 258
P\ (O L @ aT= T o [=] TR 259
AMQP EXCRANZES .ottt ettt sttt st st st st st e st sabesasessaesasesatesasesanas 261
AMOQP QUEUEBS ettt e seeseesseeseeeneseenens 263
AMQP PUDIISN MESSAEESeiiiiiieitieteetese sttt st st st s sttt saae s 266
AMQP CONSUME MESSAEESeeiiieiiieiiiieeeiiieeeitte ettt e sstte e st te e sbt e e s sbreessabeeessbeessseeessanes 267
AMQP GEE MESSAEES....eiiiiieiiitieieiite ettt ettt et te s sttt e s sabeeessabeeessreessseeessanes 269
AMQP QOS ..ttt e e e e s e s ettt e e ee e eheeh s h e bbbttt e sttt enes 270
Y|V (@] o I =1 o 1= Lat d (o] [T SRRSO 271
el o) o Talo] 12N 1Y (@ 1 = SRR 273
TSECWSPCHENT_AMPQT .ottt st sttt ettt 275
ClieNt AMQPT CONNECE uvviiiiiiiiiie ettt et e e e esbb e e e e e sabbr e e e e esaabaeeessearaeeeeas 278
Client AMQPT DiSCONNECT c.coouviiiiiieiieeiec ettt et eesrre e e e esbrr e e e s ssabbeeessesbrareessearaeeeeas 279
Client AMQP1 Idle TIMeout CONNECLION c...uvviiiiiiiiieecceiee ettt e 280
Client AMQPT CONNECLION STAE ..ciiiviiiiiiiciieiee ettt e e e saraeee s 281
Client AMQPT AUTNENTICATION wuvviiiiiiiiiec e esra e s eeaaaeee s 282
Client AMQP1 AzZUre MeSSAZEBUSccoviiiiiriiciecece ettt saaesaee s 283
Y| (@] o BSY=TS Y o] o [RRRRURT 284
AMOQPT LINKS .ttt sttt et sbe b sb e s bbb et et e s e e eneeneens 286
AMOQPT SENAEE LINKS wvveviiiieiiiiii ettt ceete et ceeire e seaar e e e s sesabaeeeesesssaseessessbaseessennns 287
AMOQPT RECEIVET LINKS veviiiiiiiiiiiieeiitei ettt ceette e eeirr e e seaate e e e sesabareeesessbaseessesssneessennns 289
AMQPT SENA MESSAEE....ciiiiriieriieriesieete sttt st sttt st st sbe st e sasesbessesstesasesases 291
AMQPT REAA MESSAE....eiriiiriiiriieriieeiteste sttt et sttt st st e st e satesasesasesssesasesssesasesanes 293
PrOTOCOI STOMP ..ottt sttt ettt b e s bt e e b e et e 294
TSECWSPCHENT_STOMP ...cuitititeeeetete ettt sttt sttt ettt 295
TsgcWSPClient_STOMP_RabbitMQ.....cccooueiiieieieinireeneresese s 297
TsgcWSPClient_STOMP_ACLIVEMQcovviiiiiiienieenieeneesiee et siee s e siee s saesnesaesasesanes 299
ProtOCOI APPRTC ittt sttt st st st s it st st e sabesaaesstesaeesanesaeas 302
TSECWSPSEIVEI _APPRTC ettt e st e s bneessasaeesnnee s 303
ProtOCOI WEDBRTC ...ttt sttt ettt sttt ne e 304

SGCWEBSOCKETS

vii

SGCWEBSOCKETS

TSECWSPSErver_WEDRTC....ccuiiiiiieeieeieenieese sttt ettt sie e san e st sase st snesaaesanesnnas 305
Protocol WEbRTC JAVASCIIPT...cciierierierieriesiesteste sttt sttt s sae s s s 306
PrOTOCOI WAMP ...ttt b et sb e s bt e sbe e ne e 307
TSECWSPSEIVEI_WAMP ...t e s e s 308
TSECWSPCHENT_WAIMP ...ttt ettt ettt s san e saa e sanesaaesanesaaesasesnnas 310
ProtoCol WAMP JAVASCIIPE ..ciiuiiiiirierieriesie ettt sttt st sttt st saae e 312
SUDSCIIDRIS .ttt sttt st sb e e enbesaeennennes 315
PUDBIISNEIS. .ttt b 316
SIMPIE RPC ittt sttt st st e et e e be e beesbeebeesbeenbeenbaesbeensnans 317
RPC Progress RESUILS ...c.iiiiiiieiiesiesteseste sttt sttt st st sa e st sane e 318
PrOTOCOI WAIMPZ ...ttt ettt b et b e st sb e ne e 320
TSECWSPCHENT_WAMPZ ...ttt st st sttt 321
ProtOCOI DEFAUIL ..ot 326
LT a Y e YT V=T oY 4 o PP P PO POPROPPPRPP 328
TSECWSPCHENT_SEC .ueiuviiiiiieeieeieeiteesie ettt ettt sbe e st saaesaeesaeesaeesaeesasesasesanesasesssesasesnnas 330
TSECIWWSPCIIENE_SEC veiuveiieeieeieeieeiieesieenie et sie st e st st staesaeesaaesaeesaaesasesasesssesanesssesasesanes 332
Protocol Default JaVasSCriPL.. ettt s sae s 333
PrOTOCOI DAtASEL....iiuieiiiieierteeieiere ettt st b et b e sae e s be et e 337
TSECWSPSEIVEI _DaAtaSel...cccuiiiiiiiiiieiiee ettt ettt et e s rr e s sabeeesnnee s 338
TSECWSPCHENT_DAtASeL ..ccueiieeiiiieiieeiieenieerie ettt sieesieesiee st e sasesasesanesanesaeesasesnnes 340
TSECIWWSPCIIENt_Dat@SeL...cviiiiiiiiieiieeieeieesie ettt st sie e e st saresiaesnesaaessaesanesanes 342
Protocol Dataset JAVASCIPL.cuiviirierierienieste sttt sttt sa e s st e st st sane e 343
Protocol Dataset Replicate Table ..o 346
Protocol Dataset NOtify UPdates......ccoivvierienienienienienieseeseese e s 347
PrOTOCOI FIlES .ottt sttt b e 348
TSECWSPSEIVEL _FIlES...iiuiiiiieieeieeiecieeeee ettt st st st san e s anesanessaesatesanes 349
TSECWSPCHENT_FIlES ..viiiiiieeieeieceeteee ettt s s st sae e s aaesanesatesanesanes 351
TSECWSMESSAZEFIIR ...eiieiieeieeeeeeee ettt st s st sas e s b s aaesaaesanesanas 353
HOW SeNd FIlE@S TO SEIVEI ..ottt s e 354
HOW Send FileS TO ClENTES ..cuivieeieeeeeeerete ettt s 355
HOW SENA Big FIlES ..coueiiiieriieiiesiestesteste ettt sttt st st st st s saaesane e 356

viii

SGCWEBSOCKETS

PrOTOCOI PrESENCE ...ttt sttt s ne e 357
TSECWSPSEIVEI _PrESENCE ...ttt ettt e st e s eessareeesnnee s 358
TSECWSPIreSENCEMESSAEEeeiiiiieiieee ettt ettt e st e s s b e e s saraeessanee s 361
TSECWSP CHENT _PreSENCE....iiiiiieeieeteee ettt st st st sas e st esaesaaesanesanes 362
ProtoCol PreSence JAVASCHIPL ..oviirierienieniestesteste sttt st sa e st sane e 365
APIS et bttt et h bbb bbb e b et et et et et et et enes 368
APLBINANCE ..ttt st s st s s s 370
Binance Connect WebSOCKEET APcoeiiiiiriiieesteeeeeeee et 377
Binance Subscribe WebSocket Channel ..o 378
Binance Get Market Dataccceceverierenieienieeeeiesitetereeee et s 379
BiNance Private REST APL....oi ittt s 380
BiNANCE Trade SPOL....iiiiiiiciieciesestese sttt st st sia e st e stesaaesaees 381
Binance Private REQUESES TIMIE c....ciiiiiiiiieiieeiieeieeeteeete ettt s s s s 383
BINANCE WINAIGW ...ttt 384
API BINANCE FULUMES ...ttt st st st s s s 385
API BINAGNCE FULUIES TraO@....ooueiiiiieiieieeieeiesieetete sttt sttt s e 390
APL SOCKELIO ...ttt et s sb e s bbbt et e st ns 391
AP COINDASE ..ttt sttt s 393
Coinbase ConNect WebSOCKET AP ..ot 397
Coinbase Subscribe WebSocket Channel.........cocooeviiieiiniienieeeeeeeeseee e 398
Coinbase Get Market Data......cceecerereerienienierieneeie ettt s 399
CoiNbase Private REST APl ..ottt 400
Coinbase Private REQUESTS TIMIEivcuirieriieienieeiesie st ereesreesieesieeseeesaeesaeesaeesseeseeesanens 401
COINDASE PlaCe OFUEIS ...viieeieieeieiesieetestete ettt sttt sb et s nes 402
Coinbase SANABOX ACCOUNTouiriiriiriieierieeiete ettt sbe e sbe s nnes 403
APT SIZNAIRCOIE ..ttt sttt et sb e st sb e bt eaesbe e s s e 404
APLSIZNAIR e sttt ettt 410
AP KFAKEN L.ttt sttt et sb e et sb e s bt e e bbb b ne e 413
API Kraken WebSoCKets PUBIICcocviiiriiiiieeeeeeeeeeeces e 415
API Kraken WebSOCKetS Private........ccveiiiierinieieneeesestetese sttt 421

AP KEAKEN REST PUDIIC ittt e e e e s e e e e e eeeeeeeseeeseeseeseees 424

SGCWEBSOCKETS

AP Kraken REST PriVatecoeeievieriieierieniteiesestete sttt ettt s e 426
AP KFaKEN FULUIES....cviiiiiesieeiieteeieet ettt sttt sttt sbe e s e 429
API Kraken Futures WebSockets PUDIIC.......covevevieririeeneceeseeeeeeeeee e 430
API Kraken Futures WebSockets Privateocccevieienenieienenecieseeeeeseee e 437
API Kraken FUtures REST PUDBIIC ..cc.eiiirierieiieeieeeeeeeeeeee e 443
API Kraken FUtUres REST PriVatecccceoiirierinieieneeesestere ettt 445
APT PUSRIE .ttt ettt ettt sb e s bbbt et sbe e ne e 450
APT BITMEX ettt s s s st 457
Bitmex ConnNect WebSOCKET AP ..ottt 460
Bitmex Subscribe WebSocket Channel........c..ooveeririeninieeeeeeeeee e 461
HOW Place BitmMeX OFTercc.eeieiiririerieniteiesteeteie sttt sttt st sbe e 462
AP BIEIINEX ettt ettt st b et s h e ne e 464
APTKUCOIN 1ttt st st st st st st st st sane st 468
Kucoin ConNect WebSOCKET AP ..ottt 474
Kucoin Subscribe WebSocket Channel ..o 475
KUCOIN Get Market DAtcceeeeviererierieniieienieetee sttt st s 476
KUCoin Private REST APt 477
KUCOIN Trade SPOL...iiiiiiiecieciesiestesteste ettt st st st st st st saeesaaessaesatesaaesanes 478
Kucoin Private REQUESES TIME ..civiiiiiiiiieeeieeeieeetee sttt sttt st sbe e b saneesanees 480
APLKUCOIN FUTUIES ..ttt st st st st st st st s st s 481
Kucoin Futures Connect WebSOCKET APlc.coveveririenenieieseeeeieseeesiese e 486
Kucoin Futures Subscribe WebSocket Channel.........ccoevveveninienininiceneeeeeenne 487
Kucoin Futures Get Market Data.......ccoceeeeveerenierienieierieseeesreetere st 488
Kucoinf Futures Private REST APlcoeiiiiinieienieeiereseeesreeteie sttt e 489
KUCOIN FULUIES Trad@. ettt sttt ettt et 490
Kucoin Futures Private REQUESES TiMEcccuiiiiiieeiieiieeeiee ittt 492
APL3COMIMAS ittt s b e sbe e sabe e sane s 493
APT OKX ettt ettt b e sttt ettt ettt et e b e bbb bbb et et et et et et et enes 496
APIXTB ettt sttt ettt e h e b bbb bbbt e b et e st et enes 501
AP BYDIt ottt st e et 504

Y ad I =] Lo Yol (el o = 1 o T TR RTRTRRRRRPRRPRON 508

SGCWEBSOCKETS

APT C Xttt ettt sttt b e s bbbttt ettt et h e bbbt b bbb et et et et et ent et enes 510
APT CEX PIUS ettt sttt sttt sb et sb e s bt et b e bt et sbe e s s e 517
AP DISCOIA ittt ettt ettt bt et s b e aeesbe s bt e e b e e bt e s e sbeeneennenne 521
APTWRNAESAPP eveevteriieriiniinieste st st st st site st st s tesatesaaesaaesstesasessaesasesasesasesssesasesssesasesnnas 524
WHatSADD Create AP civeiieeieeieiieiiieenieenie et sieestee st e steesieesaeesaaesaaesasesasesasesssesssesssesssesnnes 528
WhatsApp Phone NUMDEr [Q......oiiiiiiiiieieecceceenes et 530
WRNALSADPD TOKEN ..ttt ettt ettt s saa e sae e saeesasesaaesanesaaesasesanes 531
WhatSAPP WEDNOOKuiiiieieee et 532
WHNAtSADD SECUILY eiiiiiieiieeieeieete ettt ettt ste e st sa e saa e saa e sasesanesatesanesaaesanesanes 533
WhatSAPD SENA IMESSAEESeiiiiiiiiiiiieeieet ettt ettt s sieesae e siae st e sasesasesanessaesasesnnes 534
WhatsApp Send INteractive MESSAZES......ccvviriiriirienienienreneesiee e saesaesaessesanes 537
WhatsApp Send Template MeSSAZeS.....ccviiiriiriinienienieseesee st sne s 541
WhatsApp Receive Messages and Status NotificationsS.......c.cccvcvevveviienienienieniienienne, 543
WHatSAPP SENA FIlES ..ottt st st st s st s s aaesanesanes 545
WhatSAPP DOWNIOAd MEAIa ..ccveeiiiiiiiiiiieieeieeteseeste sttt st sae e s ae st s 547
F N B =T =Y = = o DO OO P RSO PRR PR PPRRPRR 548
Send Telegram Message With Inline BUttONS......cccvcivviiiiiiiiienecneccccenceeese e 557
Send Telegram Message With BUtLONS........oociviiiieriiiniecieeeeieeeese e 558
Send Telegram MesSage BOldoouiviiriiiiiniiciecieciecece e 559
Telegram Chat NOt fouNd @S BOT ...couiiiiiiiiiiiicicreeteteee e s 560
Telegram SPONSOred MESSAEESccvviireerieriierienteseeste st sresieesirestesisesaressessesseesasesanes 561
Send Telegram INVOICE MESSAEEovcuiriiriiniieieeeee ettt e e sbeesaeesaeesreesbeesanens 562
Telegram Get SUPErGroup MEMDEISocuiiviiiiiriireeree sttt s sae e 563
Add TeIEEIAM PrOXY.c..iiiiisiiiiesiiesiestestesteste st st stestesaestesaaessaesatesasesasesssesasesssesnsesnnes 564
REZISTEr TEIEEIAM USEI ..oiiiiiiiiieeiiesteeteete sttt sttt st st st s st esaesane e 565
RCON ettt sttt s b et b ettt e et e e st e bt e bt e bt s be s b e s b e s b et et et et et enseneeneens 566
(@1 Y/ o1 0] [o] o] o 1] SH PP P PP PP PPPOROPPPROPPR 567
RTCMUILICONNECHION .ttt sttt s ne e 572
WEDPUSH ..ottt b e 574
TSECWSAPISErVEer_WebPUSK ...c..ooiiiiiieeeeeeetesteste et s 575
TSECWEDPUSHN_CIIENT...iiiiiieeieceeecece ettt s st s s st s s aaesanesaaes 577

SGCWEBSOCKETS

EXEENSIONS .t st et sttt s 578
PerMesSage-Deflate.......iiiiiiiiirieceee et 579
D flat@-FramI@ ... et 580
OPENAL ettt e s st e st e e s bb e s s bt e s bt e e e b e e s e bt e e s s bt e e esabeeeenbeeea 581
OPENAI MOAEIALION ..eiuvieiieiierierte sttt ettt st e et e e be e beesbe e beesaeesseesseesbeenseens 585
(@] o7=T0 V2N I o 1= (OO OO OO OO UUPRURRUPUPO 586
(@] o7=7 0 VN Il =l [PO OO OO USROS RURRUPUPPR 587
(@] o7=10 VN XU o [o T OO OO OO SORR U SPRURRUPPPPI 588
OPENAI MOAEIALION ..eiuvieiieiierierte sttt ettt st e et e e be e beesbe e beesaeesseesseesbeenseens 589
(@] o1=T0 VNI o] o] [of= 14 (o] s 1SR OUESO O RUUPRURRUPUPI 590
TSECAIOPENAIASSISTANT ...eiitiieiieieeeie ettt re e e e sbe e e saaessaseesanesbaeens 591
TsgcAlOpenAlAssistant File SEarch ...o.voivioiinieieseeee e 593
TSgCAIOPENAIASSIStANT STrEAMINGeivvierieerieeeeere et sae e s saaeens 595
OPENAT AUIO. .. eiitiiiteriiestesterte sttt sttt st st te st e et e e be e beesbeesbeesbaesseesseesseensnens 597
TSECAUAIORECOIAERIMU ..cuuviiiiiiiieieeieeieesieerie ettt st st st sanesaaesanesaaesasesnnes 598
LIS (o7 X0 o [o] o F=) V=T Y [OO PP 599
TSECTeXtTOSPEECNSYSTEIM ..ttt e s st sas e s aaesaaesatesaaesanas 600
TSECTEXtTOSPEECNGOOGIE ...c.uveeviiiiiiiieieeeet ettt s sae st sate s 601
TSECTEXtTOSPEECNAMAZON ...veiiieiieiieieerieere ettt et see s saeesaeesaeesaeesanesasesanesasesanesanes 602
TSECAIOPENAICNABOLeiivieiecieeteieee ettt sae e sae e st san e saaesanesaaesasesanes 603
TSECAIOPENAITIANSIATON .cutiiieiiicieeeee ettt s st sar e saaesaaesaesaaesanesanes 605
TSECAIOPENAIEMDEAAINGSviiiiiiiiiiiieeeet ettt st ne e sanesanes 607
TSECAIDAtaDASEVECLOIFIl ..cuviiiiiieeieee ettt st 609
TSgCAIDatabaseVeCtOrPINECONE.covvirieieeetesee sttt sttt s 610
EMDbeddings Create VeCtOrS. .ttt sttt st st st st 611
EMDbeddings ChatBot.......cociiiiiiiiienierieneesee sttt st st saae s 612
PINECONE ..t sttt st s st s a e s 613
LT ettt ettt b bbbttt h e a e bt e h e bbb e b b e b et et et et et e e et enes 616
[OT AMAZON MQTT CHENE...uviiiiiicieiee et eesbr e e esbbe e e s e esbar e e e senaaaes 617
[OT AZUIEe MQTT ClIENE ittt e e e s esbbe e e s eesaaaaeeesenanaes 624

SGCWEBSOCKETS

LIS (o I A G 11= o | OO PR OUPR PP 631
ReqUESt HTTP/2 MEthOdocuiiiiieriecieceeeesestese ettt st 637
HTTP/2 SEIVEE PUSK ..ottt st 638
HTTP/2 DOWNIOAA Fl@ ...ttt 639
HTTP/2 Partial RESPONSES ...cuiiviiriieriieriertesteste sttt sttt st st st st st saae e 640
HTTP/2 HEAUERIS ettt ettt st b e ne e 641
Client CIoSE CONNECLION ...ovuiiiiieeieieree ettt st sb e st nees 642
Client Keep CONNECLION ACHIVE......iiiivieeieeieeieee sttt saeesbeesbeesanens 643
HTTP/2 Reason DiSCONNECLION ...cc.uiiiiiiirieiieiieniienieste ettt s 644
Client PeNdiNg REQUESES....ccuviiiiiieiiesiesieete ettt sttt et sbe b e saeesbeesbeesbeesanens 645
Client AULNENTICATION .e.eiiiriieieeeeeee e s 646
HTTP/2 @Nd OAULNZ ...ttt sttt 647
TSECHTTP2CONNECHIONCHENT..cctiiiiiieeieerieereere ettt s sar e s aesaesaaesanesanes 648
TSECHTTP2REQUESTPIOPEITY ..eeieiiiiieiieeeiteeetee ettt ettt s e s e s e s 649
TSECHTTP2RESPONSEPIOPEITY . ccuitiiieiieeiiie ettt e s e s e s 650
Apple PUSH NOtIFICAtIONS co.eveiieieetececeeeseseete ettt 651
Register yOur APP With APNSooiiiiiierienteeesete ettt st s 652
Generate @ Remote NOtification APNS ...c.ooieririeieneeeereseeene e 653
Sending Notification ReqUESES t0 APNS.......oociiriiriiiiiiiiececece e 654
Token-Based CoNNECtion tO APNSooi ittt e 655
Certificate-Based CONNECLION TO APNS ...cuiriiriirieieneeeeteseetese et 656
H T TP T ettt bbbttt et et b e bt bbb s b s b e bt e b et et et e e neens 658
OAULNZ ettt ettt et a e bbb bbbt e bt ettt ene 661
TSECHTTP_OAULNZ_CHENT c..eiiiieieeieeieeieetee ettt s s ae s saae st s 662
OAuth2 Client for Web AppPliCatioNScuovviiiiriiiieciecececece e 668
OAuth2 Client for Desktop APPliCAtiONS......cccvvciirieriieriieeiecieereereere e 669
TSECHTTP_OAUth2_CHENt_GOOZIEcoiiiiieiieiieiteseestestese et 670
TsgCHTTP_OAUth2_Clent_MiCroSOft....iiiiiiiieeieneeriertesresresee e 671
TSECHTTP_OAULNZ_SEIVEL ..cvviiiieieeieetteteest ettt s st st s saaesaae s 672
OAULN2 Server EXAMPIE ...ttt sae et e saeesbeesbaesanens 675

OAuUth2 Customize SigN-IN HTMLoociiiiiiiinieeienieciesteere e sane s 679
OAULN2 Server ENAPOINTS......oiiiriiriiniesieeteste ettt eaeesteeste et esbeesaeesaeesseesseesaeesanens 680
OAULN2 REZISTE APPS wvvervieriieriieriesieste st etestestestessesbeesseesseesseesseesseesseesseesseesseesseessaens 681
OAUth2 Recover ACCESS TOKENSccuirieierieeteieseetese ettt 682
OAUth2 Server AUtheNtICAtION.......coerieereeeee e 683
OAUth2 None AUthentiCate URLS........ccceverierinieieseeeesteseceesie ettt 684
TSECHTTP_OAULN2_Server_ProVider ...t sne s saesse e 685
OAULN2 Provider AZUIE ADcc.ooeeverieienieeeesie sttt sttt sbe e sae s nees 687
OAuth2 Provider Private ENAPOINTSccciiiiriirierieniestecieeieeie et esieesieesieesieesieesanens 688
OAuUth2 Provider AUtheNntiCationcoceverierenieieseeeen e 689
OAULN2 Provider REQUESTES......uiviiiieriesieeteete ettt este et sbeesaeesaeesaeesbeesbeesanens 691
J U T ettt h e bt bbb bbb e ettt et et eas 692
TSECHTTP_JWT _CHENT ..eiteiieeieeeeteeteete ettt ettt ettt s st s st sanesaaesanesnnas 694
TSECHTTP _JWT _SBIVEN ettt st st e s e s s bt e e s saraeesnneeas 697
AMAZON SQS e raaeaaaaaeeaaes 699
GOOEIE OAULNZ KBYS ..uviiiieiieniiesite sttt sttt sttt sttt v et be e beesbeesbeesaeenseesbeesbeensnens 704
GOOEZIE SEIVICE ACCOUNTS ..coiiiiiiriieeie sttt ettt sttt st et e e te e be e beesbeesbeesaaesseesseesbeensnens 710
GOO0gle Cloud PUB/SUD ..c..ooiiiiece et 714
(CTo o] = ISl @1 [T oo = OO OO RO USPRURRUPUPI 723
Google Calendar SYNC Calendarsc.oeveeiiiiinieciecieccee e 729
Google Calendar SYNC EVENTS ..ottt esbeesbeesanens 730
Google Calendar RefreSNTOKEN........ovcviviiriicieccce et s 731
Google Calendar ServiCe ACCOUNTcccuivierierieeiece ettt saeesbeesaeesaeens 732
GOOEIE ClOUA FCM. ittt sttt sttt sttt sttt e be et e beesaaesbaesbeesbaensnans 733
LIS (o0 1 o 1 1= o | SO PO PO PP 735
TSECUDPSEIVE ...ttt e st e s et essab e e e ssbeessbbeessnbeeesnnnens 737
STUN <ttt ettt b e s b bbb et et oot et e st e bt e bt e bt s besbesbe s b e st e bese b et enseneens 739
TSECSTUNUCEHENT ..ottt s e st s e st e sbeesba e saaesasesanesaaessaesasesasesnnas 740
STUN Client UDP RetranSmMiSSIONS.cccverterierierieienientesiesieeiesseseeseesseesessesssessesseenenees 743
STUN Client Long Term CredentialS.........cocevieriiiiinieniecieeieeseesieesieesie e e e esee e 744
STUN Client ATErIDULES ...c.eeieieeeeeeeeee et 745

SGCWEBSOCKETS

Xiv

SGCWEBSOCKETS

TSECSTUNSEIVEL ..ottt ettt e st e s et essab e e e sabaessbaeessareeesnnnens 746
STUN Server Long Term Credentialscocoveviiiieiienieeiecieesieesieesieesieesieesieeseeesieesanens 748
STUN Server AltEINAte SEIVENouiii ettt sttt sbe s nees 749
TURN Lttt ettt ettt et b e bt e bt b e bt s b e s b e sbe s b e sbe s b et et et et et et e st entenes 750
TSECTURNUCHENT ...eteeiecieeeeteeeee ettt ettt ettt sae e st e e saa e saa e sasesasesanesanesasesasesnnas 751
TURN Client AllOCate [P AAIESS.....coiiieririeienieeieseeee ettt e 755
TURN Client Create PermiSSIONSc..ceceverierierinieneneeeesie st st sne e 756
TURN Client Send INAICatiONcc.eecierieieriericiesieeieseeee ettt e 757
TURN Client CRannelS... .o oottt st 758
TSECTURNSEIVEL ..ottt ettt et e st e s et e e ssabte e ssbeeeebbeessnraeesnnaeas 759
TURN Server Long Term CredentialS ...t saesae s 762
TURN Server AllOCAtIONS.....ocuevuirieierieeiesteeiteteste ettt sttt sttt 763
L E ettt bbbttt a e h e h e bt bbb b e b et et et et et e e e e enes 764
S (o [=T 1= o | OO ROUP RO PP 765
ICE Gather Candidates.......coevieiieririerienteereetee ettt sttt 767
[CE Pair Candidates ...c.oeeeieriieiieierieeiesiesiteteste sttt sb et sbesae e sbe e ne e 768
TSECRTCPEEICONNECLION cvvieieeeiieeeieeeie ettt ettt ettt e st e sabeesabeesaseesaeeesanesseeens 769
RTCPeerConnection WebSOCKEt SEIVENccvvvivieririeieeeseeeeeseeeese e 771
RTCPeerConnection WebSocket CHENt.......ccoiviereririeereeereeeenee e 772
RTCPeerConnection STUN TURN ...ccciiiiiiiiiieieteteeteeseese et 773
RTCPeerConnection SigNaliNg ..ot 774
RTCPeerConneCtion ICE.......ooiiiiiieiieieiieseeeee ettt st 775
RTCPeerConnection DTLS ..o s 776
RTCPeerConnection Data.......coueiiiiiiiiiiieiieieeee e 777
=) 2= T= | o L SO P PP PPPROPRPRPP 778
TSgCWSHTTPWebBroKerBridZeSEIVeruiiiiirienienieriestesre sttt 779
TSgCWSHTTP2WebBrokerBridgeSErVer ...ttt sae s 781
TsgcWSServer_HTTPAPI_WebBrokerBridgeccvverierienienienieniesiesiesee e see v 782
L0 T o] 3 2 R 783
OPENAPL .. s 783

OPENAPT Parser PASCal ..c.uovieiiiriiiiesiesieeeeteste ettt saeesbeesbeesanens 784
OpenAPI AdditioNal ProPerti@S.. ..o iiiiieeiieieeieeiese sttt saeesanens 789
(@] o1=T 0 VN o I 1= o | OO OO OO TR RSO RUURRURRUPUPR 791
OPENAPI AMAZON AWS ...ttt ettt e e st e s s bt e s araeessaneeesnreeenns 794
OpenAPI AmMazon AWS CredentialS........cvvieieriirieiienieeieeiecsieese e esieeseeesieesanens 800
OPeNAPI AMAZON AWS S3 ..ttt st e st e e s e e ssanee e snneeeas 802
OPENAP] GOOEZIE CIOU ...uuiiiiiiiiriiisiiesie sttt et sbeesaeesbeesbaesbeesanens 803
OpenAPl Google Cloud OAULNZ........ooiiiieeeeeceee e 808
OpenAPl Google Cloud Service ACCOUNTES....ccciviiicierrierreeieerie e esre e sieesaee e e sreesieesanens 811
OpenAPl Google Cloud PUDSUDoociiiiiiiiiecececececcceee e 816
OpenAPl Google Cloud Calendar ... sane s 817
OPENAP] GOOEZIE DIIVE ..coueiiiieeiieriieeite sttt ettt sttt te e te e beesbeesbeesaaesseesbeesbeessnens 818
OPENAPT MICIOSOTT..uiiiiieiiieiiecierte ettt sttt e et sbeesbeesaeesbeesbaesbeesanens 820
OPENAPI MIiCroSOft TENANT....c..iiiiiiieeieeeet ettt sae b e sbeesbeesanens 825
OpenAPI Microsoft Register APPliCatioNccvecvivcieriieriieeiecieceeeee e 826
OpenAPI Microsoft OAULN2 COe. ..ottt 829
OpenAPI Microsoft OAUth2 CredentialS.......oc.evvivcerieriiieiececeeeeeee e 831
OpPeNAPI MIiCroSOft Graph co.icciiiiciecieceeeeeee et san e 833
APIS ettt h bbb b bbb et et et et et e e et enes 834
ADStractAPI GEOIOCATION....iiiierieeteteete et st s ae st s 835
=T 3 4 T F 836
SIVEE LAt ittt ettt ettt b e b bbb beesbeenaeen 836
CHENT CRAT. ittt et ettt e bbb e bt e beesbeesbeesbeesbeesbeens 838
(@1 T= o | S OO O OO OO OO SP RO UUPTOPTPPPTUPIOI 839
(@ 1T=] o 1oAY [1 I R 840
CHENT SOCKETIO .ttt ettt ettt be e bt sbe e sbeesbeesbeens 842
YTV =T o\ (o] o] 10] PSP PR PROPPPPRN 843
SEIVELN SNAPSNOLS ..ttt ettt ettt e sb e bbb e sbeesbeesbeens 846
ClENT SNAPSNOTS....eiieetee ettt be e sb e sbe e sbeesbeesbeen 847
UPIOAA Fl@ ettt ettt sttt st 848

SGCWEBSOCKETS

XVi

INTRODUCTION

Introduction

WebSockets represent a long-awaited evolution in client/server web technology. They allow a long-established sin-
gle TCP socket connection to be established between the client and server, allowing bi-directional, full-duplex mes-
sages to be distributed instantly with little overhead, resulting in a very low latency connection.

Both the WebSocket API and the well as native WebSocket support in browsers such as Google Chrome, Firefox,
Opera and a prototype Silverlight to JavaScript bridge implementation for Internet Explorer, there are now Web-
Socket library implementations in Objective-C, .NET, Ruby, Java, node.js, ActionScript and many other languages.

The Internet wasn't designed to be so dynamic. It was designed to be a collection of HyperText Markup Language
(HTML) pages, linked together to form a conceptual web of information. Over time, static resources increased in
number and richer elements such as images became part of the web fabric. Server technologies evolved to allow
dynamic server pages - pages whose content is generated in response to a request.

Soon the need for more dynamic web pages led to the availability of Dynamic HyperText Markup Language
(DHTML), all thanks to JavaScript (let's pretend VBScript never existed). In the years that followed, we saw cross-
frame communication in an attempt to avoid page reloads, followed by in-frame HTTP polling. Things started to get
interesting with the introduction of LiveConnect, then the forever frame technique, and finally, thanks to Microsoft,
we ended up with the XMLHttpRequest object and thus Asynchronous JavaScript and XML (AJAX). AJAX in turn
enabled XHR Long-Polling and XHR Streaming. But none of these provided a truly standardised, cross-browser so-
lution for real-time, bi-directional communication between a server and a client.

Finally, WebSockets are a standard for bi-directional, real-time communication between servers and clients. Initially
in web browsers, but ultimately between any server and any client. The standards-first approach means that we as
developers can finally create functionality that works consistently across multiple platforms. Connection limitations
are no longer an issue as WebSockets represent a single TCP socket connection. Cross-domain communication
has been considered from day one and is handled within the connection handshake. This means that services like
Pusher can easily use them to provide a massively scalable real-time platform that can be used by any website,
web, desktop or mobile application.

WebSockets don't make AJAX obsolete, but they do replace Comet (HTTP Long-polling/HTTP Streaming) as the
solution of choice for true real-time functionality. AJAX should still be used for short-lived web service calls, and
when we eventually see a good uptake in CORS supporting web services, it will become even more useful. Web-
Sockets should now be the standard for real-time functionality, as they provide low-latency, bi-directional communi-
cation over a single connection. Even if a web browser doesn't natively support the WebSocket object, there are
polyfill fallback options that almost guarantee that any web browser can actually make a WebSocket connection.

sgcWebSockets is a complete package providing access to WebSockets protocol, allowing to create WebSockets
Servers, Intraweb Clients or WebSocket Clients in VCL, Firemonkey, Linux and FreePascal applications.

Fully functional multithreaded WebSocket server according to RFC 6455.

Supports Firemonkey (Windows and MacOS).

Supports NEXTGEN Compiler (I0OS and Android Support).

Supports LINUX Compiler.

Supports Lazarus / FreePascal.

Supports CBuilder.

Supports Chrome, Firefox, Safari, Opera and Internet Explorer (including iPhone, iPad and iPod)

» Supports Microsoft HTTP Server APl and IOCP for high-performance Windows Servers. HTTP/2 protocol
is supported.

¢ Multiple Threads Support. Indy Servers support IOCP(Windows), EPOLL(Linux) or default Indy one thread
per connection model.

* Supports Message Compression using PerMessage Deflate extension RFC 7692.

» Supports Text and Binary Messages.

» Supports Server and Client Authentication. OAuth2 is fully supported.

» Server component providing WebSocket and HTTP/2 connections through the same port.

Proxy Server component allowing to Web Browsers to connect to any TCP server.
WebBroker Server which supports DataSnap, HTTP/2 and WebSocket connections using the same port.
Load Balancing Server.

+ Client WebSocket based on WinHTTP API.

+ Client WebSocket supports connections through Socket.lO Servers.

INTRODUCTION

Build Al Powered applications with support for OpenAl, Pinecone and more.

HTTP/2 protocol is fully supported (client and Server components).

WhatsApp and Telegram clients.

STUN and TURN protocols are fully supported (client and Server components).

Supports Server-Sent Events (Push Notifications) over HTTP Protocol.

WatchDog and HeartBeat built-in support.

Client WebSocket supports connections through HTTP Proxy Servers and SOCKS Proxy Servers.
Events Available: OnConnect, OnDisconnect, OnMessage, OnError, OnHandshake

Built-in sub-protocols: JSON-RPC 2.0, Dataset, Presence, WebRTC, MQTT (3.1.1 and 5.0), STOMP,
AMQP (0.9.1 and 1.0.0) and WAMP (1.0 and 2.0)

Client Built-in API: Blockchain, Bitfinex, Pusher, SignalR Core, Huobi, CEX, Bitmex and Binance.
Support for JSON parsers: Delphi JSON and XSuperObject.

Built-in Javascript libraries to support browser clients.

Easy to setup

Javascript Events for full control

Async Events using Ajax

SSL/TLS Support for Server / Client Components (OpenSSL libraries required). OpenSSL 1.1.1 and 3.0.0 li-
braries are supported. Client supports SChannel for Windows.

Find below a list of the components included in sgcWebSockets Library.

a sgcWebSockets

o TsgcWebSocketClient: WebSocket Client based on Indy Library.

o TsgcWebSocketServer: WebSocket Server based on Indy Library

o TsgcWebSocketHTTPServer: WebSocket + HTTP Server based on Indy Library.

o TsgcWebSocketServer_HTTPAPI: Fast Performance WebSocket + HTTP Server based on
HTTP.SYS Microsoft HTTP API.

o TsgcWebSocketClient_WinHTTP: WebSocket Client based on WinHTTP Library.

e sgcWebSocket APIs

o TsgcWSAPI_Binance: Binance Spot Client, supports WebSocket + REST APls.

o TsgcWSAPI_Binance_Futures: Binance Futures Client, supports WebSocket + REST APls.
o TsgcWSAPI_SocketlO: Socket.lO Client.

o TsgcWSAPI_Coinbase:Coinbase Pro Client, supports WebSocket + REST APlIs.

o TsgcWSAPI_Bitmex: Bitmex Client, supports WebSocket + REST APlIs.

o TsgcWSAPI_SignalR: SignalR WebSocket Client.

> TsgcWSAPI_SignalRCore: SignalRCore WebSocket Client.

o TsgcWSAPI_Pusher: Pusher WebSocket Client.

o TsgcWSAPI_Kraken: Kraken Client API, supports WebSocket and REST Api.

o TsgcWSAPI_Kraken_Futures: Kraken Futures Client API, supports WebSocket and REST Api.
o TsgcWSAPI_Bitstamp: Bitstamp WebSocket Client.

o TsgcWSAPI_Cex: Cex WebSocket Client.

o TsgcWSAPI_FXCM: FXCM WebSocket Client.

o TsgcWSAPI_Huobi: Huobi WebSocket Client.

o TsgcWSAPI_ThreeCommas: ThreeCommas Client API.

o TsgcWSAPI_Bitfinex: Bitfinex WebSocket API.

o TsgcWSAPI_Discord: Discord WebSocket Client.

INTRODUCTION

o TsgcWSAPI_BlockChain: BlockChain WebSocket Client.
e sgcWebSocket Libs

o TsgcTDLib_Telegram: Telegram API Client.

o TsgcWhatsApp_Client: WhatsApp Business Cloud Client.

o TsgcHTTP_Cryptohopper: Cryptohopper Client API.

o TsgcLib_RCON: RCON Client.

e sgcWebSocket Protocols

o TsgcWSPClient_MQTT: MQTT (3.1.1 and 5.0) Client. Supports WebSocket and Plain TCP Connec-

tions.

o TsgcWSPClient_AMQP1: AMQP 1.0.0 Client. Supports RabbitMQ Brokers.

o TsgcWSPClient_AMQP: AMQP 0.9.1 Client. Supports RabbitMQ Brokers.

o TsgcWSPClient_STOMP: STOMP Client, supports WebSocket and Plain TCP Connections.
= TsgcWSPClient_STOMP_ActiveMQ: STOMP Client for ActiveMQ Broker.
= TsgcWSPClient_STOMP_RabbitMQ: STOMP Client for RabbitMQ Broker.

o TsgcWSPClient WAMP: WAMP 1.0 Client Protocol.

o TsgcWSPServer_ WAMP: WAMP 1.0 Server Protocol.

o TsgcWSPClient_ WAMP2: WAMP 2.0 Client Protocol.

o TsgcWSPServer_AppRTC: WebRTC Server based on AppRTC Google Project.

o TsgcWSPServer_WebRTC: WebRTC Server Protocol.

> TsgcWSPClient_sgc: WebSocket Client SGC Protocol based on JSON RPC.

o TsgcWSPServer_sgc: WebSocket Server SGC Protocol based on JSON RPC.

> TsgcWSPClient_Files: WebSocket File Transfer Client Protocol.

o TsgcWSPServer_Files: WebSocket File Transfer Server Protocol.

> TsgcWSPClient_Dataset: WebSocket Client Dataset Synchronization Protocol.

o TsgcWSPServer_Dataset: WebSocket Server Dataset Synchronization Protocol.

o TsgcWSPClient_Presence: WebSocket Client Presence Protocol.

o TsgcWSPServer_Presence: WebSocket Server Presence Protocol.

a sgcWebSockets HTTP

o TsgcHTTP1Client:HTTP 1.0 Client based on Indy TIdHTTP.

o TsgcHTTP2Client: HTTP 2.0 Client.

o TsgcHTTP_JWT_Client: JWT (JSON WEB TOKEN) Client.

o TsgcHTTP_JWT_Server: JWT (JSON WEB TOKEN) Server.

o TsgcHTTP_OAuth2_Client: OAuth 2.0 Client.

o TsgcHTTP_OAuth2_Server: OAuth 2.0 Server.

o TsgcHTTPAWS_SQS_Client: Amazon AWS SQS Client.

> TsgcHTTPGoogleCloud_PubSub_Client: Google Cloud Pub/Sub Client.

o TsgcHTTPGoogleCloud_Calendar_Client: Google Calendar Client.

e sgcWebSockets loT
o TsgcloTAmazon_MQTT_Client: Amazon MQTT loT Core Client.
o TsgcloTAzure_MQTT_Client: Azure loT MQTT Client.

INTRODUCTION

a sgcWebSockets P2P
o TsgcUDPCLient: UDP Client.
o TsgcUDPServer: UDP Server.
o TsgcSTUNCIient: STUN Client.
o TsgcSTUNServer: STUN Server.
o TsgcTURNCIient: STUN / TURN Client.
o TsgcTURNServer: STUN / TURN Server.
o TsgclCECIlient: ICE Client.
e sgcWebSockets DataSnap
o TsgcWSHTTPWebBrokerBridgeServer: DataSnap Server Replacement with HTTP + WebSockets
Support.
o TsgcWSHTTP2WebBrokerBridgeServer: DataSnap Server Replacement with HTTP + HTTP/2 +
WebSockets Support.
o TsgcWSServer_HTTPAPI_WebBrokerBridge: DataSnap Server Replacement based on HTTP.SYS
Microsoft Server.
e sgcWebSockets Al
o TsgcAlOpenAlChatBot: Build a ChatBot with Voice Commands.
o TsgcAlOpenAlTranslator: Real-Time translation.
o TsgcAudioRecorderMCI: Record Audio using MCI.
o TsgcAudioPlayerMCI: Play Audio using MCI.
o TsgcTextToSpeechSystem: Text-To-Speech using operating system default.
o TsgcTextToSpeechGoogle: Text-To-Speech using Google Cloud.
o TsgcTextToSpeechAmazon: Text-To-Speech using Amazon AWS.
o TsgcAlOpenAlEmbeddings: allows to use your custom data to build Al applications.

o TsgcAlDatabaseVectorFile: stores the vectors in a plain text file.

o TsgcAlDatabaseVectorPinecone: supports pinecone vector database.

OVERVIEW

Versions Support

Delphi supported IDE

Delphi 7 (* only supported if upgraded to Indy 10, Intraweb is not supported)
Delphi 2007

Delphi 2009

Delphi 2010

Delphi XE

Delphi XE2

Delphi XE3

Delphi XE4

Delphi XE5

Delphi XE6

Delphi XE7

Delphi XE8

Delphi 10 Seattle
Delphi 10.1 Berlin
Delphi 10.2 Tokyo
Delphi 10.3 Rio
Delphi 10.4 Sydney
Delphi 11 Alexandria
Delphi 12 Athens

CBuilder supported IDE

CBuilder 2007
CBuilder 2010
CBuilder XE

CBuilder XE2
CBuilder XE3
CBuilder XE4
CBuilder XE5
CBuilder XE6
CBuilder XE7
CBuilder XE8
CBuilder 10 Seattle
CBuilder 10.1 Berlin
CBuilder 10.2 Tokyo
CBuilder 10.3 Rio
CBuilder 10.4 Sydney
CBuilder 11 Alexandria
CBuilder 12 Athens

FreePascal supported IDE

» Lazarus

Trial Version

Compiled *.dcu files provided with free version are using default Indy and Intraweb version. If you have upgraded
any of these packets, probably it won't work or you need to buy full source code version.

OVERVIEW

Indy Package

Some components use Indy as TCP/IP library (like TsgcWebSocketClient or TsgcWebSocketServer), this means
that Indy is needed in order to install sgcWebSockets Package. By default, sgcWebSockets uses Indy library built-
in with Rad Studio, but we provide a custom indy version which has more features than Indy: support for OpenSSL
API 1.1, OpenSSL 3.0, ALPN protocol...

Installation

OVERVIEW

2. From Delphi\CBuilder:

Delphi / CBuilder / Lazarus

1. Unzip the files included into a directory {$DIR}

Add the directory where the files are unzipped {$DIR} to the Delphi\CBuilder library path under Tools, Envi-
ronment options, Directories

All Delphi\CBuilder Versions

Add the directory {$DIR}\source to the library path

Delphi 7

Delphi 2007
Delphi 2009
Delphi 2010

For specific Delphi version

: Add the directory {$DIRNIibD7 to the library path
: Add the directory {$DIR}\ibD2007 to the library path
: Add the directory {$DIR}\ibD2009 to the library path
: Add the directory {$DIR}\ibD2010 to the library path

Delphi XE

Delphi XE2
Delphi XE3
Delphi XE4
Delphi XE5
Delphi XE6
Delphi XE7
Delphi XE8
Delphi 10

Delphi 10.1
Delphi 10.2
Delphi 10.3
Delphi 10.4
Delphi 11

: Add the directory {$DIRNIIbDXE to the library path

: Add the directory {$DIRNibDXE2\$(Platform) to the library path
: Add the directory {$DIRNibDXE3\$(Platform) to the library path
: Add the directory {$DIRNibDXE4\$(Platform) to the library path
: Add the directory {$DIRNibDXE5\$(Platform) to the library path
: Add the directory {$DIRNIibDXE6\$(Platform) to the library path
: Add the directory {$DIRNibDXE7\$(Platform) to the library path
: Add the directory {$DIRNibDXE8\$(Platform) to the library path

: Add the directory {$DIR}\ibD10\$(Platform) to the library path

: Add the directory {$DIR\ibD10_1\$(Platform) to the library path
: Add the directory {$DIR}NibD10_2\$(Platform) to the library path
: Add the directory {$DIR\ibD10_3\$(Platform) to the library path
: Add the directory {$DIR\NibD10_4\$(Platform) to the library path
: Add the directory {$DIR\NibD11\$(Platform) to the library path

For specific CBuilder version

C++ Builder 2010
C++ Builder XE
C++ Builder XE2
C++ Builder XE3
C++ Builder XE4
C++ Builder XE5
C++ Builder XE6
C++ Builder XE7
C++ Builder XES8
C++ Builder 10
C++ Builder 10.1
C++ Builder 10.2
C++ Builder 10.3
C++ Builder 10.4
C++ Builder 11

: Add the directory {$DIR}ibD2010 to the library path

: Add the directory {$DIR\ibDXE to the library path

: Add the directory {$DIRNibDXE2\$(Platform) to the library path

: Add the directory {$DIRNibDXE3\$(Platform) to the library path

: Add the directory {$DIRNibDXE4\$(Platform) to the library path

: Add the directory {$DIRNibDXE5\$(Platform) to the library path

: Add the directory {$DIRNibDXE6\$(Platform) to the library path

: Add the directory {$DIRNibDXE7\$(Platform) to the library path

: Add the directory {$DIRNibDXE8\$(Platform) to the library path
: Add the directory {$DIRNlibD10\$(Platform) to the library path
: Add the directory {$DIRNIibD10_1\$(Platform) to the library path
: Add the directory {$DIR}\ibD10_2\$(Platform) to the library path
: Add the directory {$DIR\ibD10_3\$(Platform) to the library path
: Add the directory {$DIR\ibD10_4\$(Platform) to the library path
: Add the directory {$DIRNibD11\$(Platform) to the library path

For all CBuilder versions, Add dcp\$(Platform) to the library path (contains .bpi files)

3. From Delphi
Choose

File, Open and browse for the correct Packages\sgcWebSockets.groupproj

sgcWebSocketsX.dpk and then install dclsgcWebSocketsX.dpk)

packages files for Delphi

sgcWebSocketsD7.groupproj
sgcWebSocketsD2007.groupproj
sgcWebSocketsD2009.groupproj
sgcWebSocketsD2010.groupproj
sgcWebSocketsDXE.groupproj
sgcWebSocketsDXE2.groupproj
sgcWebSocketsDXE3.groupproj
sgcWebSocketsDXE4.groupproj
sgcWebSocketsDXES5.groupproj
sgcWebSocketsDXEG.groupproj
sgcWebSocketsDXE7.groupproj
sgcWebSocketsDXE8.groupproj
sgcWebSocketsD10.groupproj
sgcWebSocketsD10_1.groupproj
sgcWebSocketsD10_2.groupproj
sgcWebSocketsD10_3.groupproj
sgcWebSocketsD10_4.groupproj
sgcWebSocketsD11.groupproj

4. From CBuilder
Choose

File, Open and browse for the correct Packages\sgcWebSockets.groupproj

sgcWebSocketsX.dpk and then install dclsgcWebSocketsX.dpk)

packages files for CBuilder

sgcWebSocketsC2010.groupproj
sgcWebSocketsCXE.groupproj
sgcWebSocketsCXE2.groupproj
sgcWebSocketsCXE3.groupproj
sgcWebSocketsCXE4.groupproj
sgcWebSocketsCXES5.groupproj
sgcWebSocketsCXEG.groupproj
sgcWebSocketsCXE7.groupproj
sgcWebSocketsCXES8.groupproj
sgcWebSocketsC10.groupproj
sgcWebSocketsC10_1.groupproj
sgcWebSocketsC10_2.groupproj
sgcWebSocketsC10_3.groupproj
sgcWebSocketsC10_4.groupproj
sgcWebSocketsC11.groupproj

5. From Lazarus

: Delphi 7

: Delphi 2007
: Delphi 2009
: Delphi 2010

: Delphi XE
: Delphi XE2
: Delphi XE3
: Delphi XE4
: Delphi XE5
: Delphi XE6
: Delphi XE7
: Delphi XE8

: Delphi 10
: Delphi 10.1
: Delphi 10.2
: Delphi 10.3
: Delphi 10.4
: Delphi 11

: C++ Builder 2010
: C++ Builder XE
: C++ Builder XE2
: C++ Builder XE3
: C++ Builder XE4
: C++ Builder XE5
: C++ Builder XE6
: C++ Builder XE7
: C++ Builder XE8
: C++ Builder 10
: C++ Builder 10.1
: C++ Builder 10.2
: C++ Builder 10.3
: C++ Builder 10.4
: C++ Builder 11

OVERVIEW

(First compile

(First compile

Choose : File, Open and browse Packages\sgcWebSocketsLazarus.Ipk (First compile and then install)

OVERVIEW

Compiled files are located on Lazarus Directory, inside this, there is a Indy directory with latest Indy source
version.

Tested with Lazarus 2.0.6 and Indy 10.5.9.4930

6. Demos

All demos are available in subdirectory Demos. Just open the project and run it. Intraweb demos may need
to modify some units due to different Intraweb Versions.

INSTALL

Install Setup

*Requires Windows Vista as minimum (Windows 2000, XP and Server 2003 are not supported).

If you use the Windows Setup to install sgcWebSockets library, the installation is guided and very simple. If there is
any error while installing, please refer to Install Errors page and you can try to install the package manually.

Trial Setup

» Execute the Trial Installer.

* The Trial setup required Admin privileges.

+ The installer will show a list of Delphi / CBuilder / Rad Studio versions and by default the downloaded ver-
sion will be enabled. If this version is NOT detected by the installer, the installer will extract the files but won't
try to compile. Please refer to install the package manually.

kg sgcWebSockets TRIAL Setup — x

Select Which Versions do you want to Install ‘;ﬁ

Select Which Versions wil install the sgcWebSockets

8 Delphi 11 Alexandria

» The next page shows the Platforms that can be installed, only those platforms detected by the installer are
enabled.

INSTALL

ri:, sgcWebSockets TRIAL Setup

Select the Platforms

- pod

Select Which Platforms will install the sgciWebSockets

B windows 54
[Android 32
[] Android 54

Back

Cancel

» The next page shows the license agreement which must be accepted to install the trial.
+ After accept the license agreement, it shows the Components that will be installed, by default all package,
compiled dcus, demos and help files will be installed. You can customize if the Help files and Demos are in-

stalled or not

ri:, sgcWebSockets TRIAL Setup

Select Components
Which compaonents should be installed?

- pod

Select the components you want to install; dear the components you do not want to

install, Click Mext when you are ready to continue.,

Full installation

Required Files
Packages
B Demo Samples
B Help File

Current selection requires at least 103,2 ME of disk space.

Back

R
1,2MB
50,1 MB
9,6 MB
Cancel

+ Finally, it will extract the files, compile and install the package and register the required paths in the IDE.

INSTALL

Customers Setup

The users who have purchase a license can install the sgcWebSockets Library using the setup. Find below step by
step how install the package.

» Execute the Installer.
» The installer runs with the lowest privileges (if runs as admin, it can't be installed in network drives). If the
destination install requires admin privileges, run the setup as administrator.

* First you must set your username/password of your private eSeGeCe account. This only must be entered
one time, the next time you use the setup, the installer will read the latest value.

chy sgcWebSockets Setup = x
sgcWebSockets Registration
Enter Username and Password
|

user@mail.com

User Mame

PaSSWﬂrd LA L L L L L]l

Forgot your password? Forgot your username?

Q) Uze Existing Licenze [Enterprize Team]
i) Mew f Update Licenze

() Install Offiine

* There are 3 options:

o Use Existing License: if this version has been already installed, the option will be selected by de-
fault. It will use the latest configuration for this version.

o New / Update License: if this version has not been installed previously, this option will be selected by
default. It will connect to the Server License to get the license information. If you've upgraded your li-
cense recently, you can select this option to update the license to install.

o Install Offline: if the machine hasn't internet access, select this option to activate your license.

Generate Key

This option generates a key that will be used to activate the license.

INSTALL

ri:, sgcWWebSockets Setup - bt

sgcWebsSockets Registration

Enter Username and Password

User Name user @mail.com

PESSWﬂrd SRR RRRERR

Forgot your password? Forgot your username?

() Use Existing License [Enterprise Team]

() New / Update License

Generate Key Activate License

Copy the key and access to your private online account: www.esegece.com/my-account/subscriptions.

Generate Key - eSeGelCe Software (2023.8.0) ®

ViJab 2Mx TXIVWGhpUm 1oViltdHdZVIpxU 2x Oak 1WNYIZMGhh YUZZd0 10VIhhMIIzVmpBe GMx ZHVRbGRXUIdzeFd WY 3hSbVZXV 256 UM IY QniNwbGD
OTmxVeFZrOVRMREZEWTBac 1ZHSNVRETINYm SCelRW\WkIXR05IV 21GTIIzaDRWVEZ WY TFSdF JuSk SWRVpWWVFYYD 20xcEVR bk 5gLFGNYdrnd
hvlleYUhsVk DXLGMaR 3h 220 K5V 1sUIhSM Z2hy vid 0 W Qy TrNaRmhOVmbwT IRVaGIX VI 4w HIWIZscEdVEXBDVIdFeFNsQIphMyY4ymtveFdHSkZO
YmRTVIRCM 1ZrVmFYMU Sy TVZETINHeFR Wa 1phVIUZsWE 1VOU SMYkox WTBGT 2FWWIVSVEZWTVdoUFUyeEZkMKISYUZwbGEz QIIXbFprilz ISR 1Nu
VIZVVRXWWZRMIF 3VFRGU2MNsVnITaziTVkZaY 1Z2teGOhMYZHY 2tal) 2FsSI ZWhFpLZFZSc12Y aFMNW a 1pWId40Q 1Yk SXpVYWHEXUKVaVFWEMY djazFw
Vm 1GbGEWCFEXVmQwUmsxR 1Y aF ZISEJy VRV Sc1ZsWIdVbGRVYkVwSYpFUKSWYTFHU ZEOVWEXVTFVEFpTY 1ZwR 1IFsTINMRFF4VmtaY 1UySndM - |
WEpQVmxall 1ZrwktVRmx YTV ST IWRIRWY 3R hY TAXRY IrWIpWRTV 2VkRER 2MsSIVSEFZX Yk VweFdrUkJOVIpXU 2x WV GFaVIRVak 55 TUZaSE LY
ZFIhelZXVFZWY 1dGZERVBEEZ WY TRwY IRWWINWBFZOTIL 1aG Vs \WIdWYIpTVTFReV JuUmtSRTVWVFVaS IWURNWWGHTVm SBMIUyeENVMURWYI
hkV 116RjMZbTFSZDASYIZsaF dSWEIQVId0a 2Rt dWER WY TBwUFYsLIZMBF 2z U0V IrcEIWR 3BPVKZaNIVG TIZSa 1L 1VUZFOVBRPTO =

Select the subscription to activate and paste the key.

INSTALL

. R TRYW VPI URITVVITITTOZIT OV VYLAVITIT VI PIV'I WIsTT III‘II‘IF\II‘-}VIIILQ\:I«.))‘ 1I\.|I‘l|\'l_}..'\.1£'~’IIIAG.U'I TYVRIVTRITIA
Offline License | yrv5Ti1WRjRWV3RNY TAXRVIIWIpWRTV2ZVKRKR2NSSIVSDF ZXY KVweF drUkJOVIpXUZXWVGFEVIRVaKSS
TUZaSE1YZFJhelZXVFZWV1dGZERVDEZWY TEWV1RWWINWBFZOTIU1aGVsWIdWVIpTVTFREVJUUMISRTY
WVFVaS1IWUNNWWGhTVmMSBMIUyeENYMUpWYINKY1 JERJNZbTFSZDASVIZSaFdSWEJQVId0aZFtvidvblgUl -
VWUFVSUIdIRmMxVVG10VIJrcEIWR3BhVKZaNIV TIZSa 1U1VUZFOVBRPTO= P

Activate License

Activate License

If the request is correct it will return a license that must be copied in the setup.

Activate License - eSeGeCe Software (2023.8.0) >

YmRTVIRCM 1ZrVmPYMU Sy TVZETINHeFR Wa 1phVUZs\WE 1VOU SMVkox WTBoT 2FWWIVSVEZWTVdoUFUyeEZkMISYUZwb GEzQIXbFprilz ISR 1Nu
VIZvVpX VY kemVin VX hWazILTURGWYZGaHNWMkpOZUZOVmIuQkhZakZzViFwR VR tdFdiWFEX VKR Gb 1L TnRSbGxhUNpWYWZudFdSRmx W Wi
U1bGIGSnhWR.zFzVGsxSVFUbFZMNY 1zWkd4dmQySkiUbFZaTW 1oVFZGYIdTMIZHYKhGVFZGWnIVak]3U 12We 1pITIVina 1YzVW0 19 IWSiZSa 2ha
ZWtwSFYWWWIdkRmR.0Um 1saE0wRVWMWQ0VDFOck 5 SmiSvikpyviBkb 1V GbFhNWHBOUmxKMFkwWmFiRIpYYmxaWFdIQIBVMIFHY 12wSESWLI
dlbFpRY IRCYWRVIZOVmholiMSVWYteHZNVIISZUL SVGFEVNIZa 12TV ZkSFYsOmPWM 115VFZal 12 sVnROVTVTVRKZEW 1ZWWINYMY J0Wm 50U 2Fr
| NVZUWVPLVDPwWYIZY aFNWETRZWW EYMYLIXSIZWWGRXUm 1oM 1Z My JkMOIW VW WENFSIBWY 3R TA 1R 1VYaF ZhMHB QYW 5V 1JsZHFUBXR.
WrntwR IR VaHdWYIpXU 2 SWWYZWVEhZMYpHVIZW ckSWTINWBGwW 2VmtSQ 1UxWnINSGR.OVIZaaFpX dGFVRNBY ZEVabGIGRIRVV3MX Y TAXRYZ
USIpWRTVEVkd4S INGUIVSEF ZpUmtwRFZGUKIOVIpX Y THwY Y IUBHNZBGhS TWxaR 128 Tmlivky zVGxVmRTVIRCM 12rymFYMU Sy TVZaTINHeFR Wa
| 1phVUZsWE 1VOU SMVkox WTBoT 2PWWIVSVEZWTVdoUFUyeEZkMKEYUZwbGEzQIXbFpriz ISR INUVIZIVYpXVFVkemyiWYXhWazlTURGWYZ Ga
HMWMkpOZUZOVmIuQkhZakZzViFwR VR tdFdiViFEx VKRG 1L TRR.SbGxhUnpW WV ZucFdSRmx Wi 1bG IGSnhWRzFzVGsxSVFUbFZMY 11z2Whkd
4dmQySkUbFZoTW 1oVFZGVIdTMIZHYkhGYFZGWnIVakd 30 12W e 1pITIVilda 12V W0 10 UWSiZ5a ZhaZwitwSFywWldkR mROUM 1s3E0wR VMY
QOVDFOckSYSmISVkpVViBkb 1VGbFRNWHEBOUmxkMFlwWmFiRIpYVmxa\WFdIQIBVMiFHY 1ZwSESWUIdIbFpRY IR CYWREVIZOVmholiNSVWVteHZ
| MVIlSZULSVGFEYNlZa 1ZTVKZKSFVsQmPWM 115VFZall 12sVnROVTVTVEZaY 12WWINVMYJ0Vm 50U 2FrNVZUWYPLYDPwWVIZY aFMNWE TR 2WW tvMyL
*SZWWWGERXUM 10M 12tV JkMDIWY mx WWWFNFSIBWWY 3R TA 1R 1VYaF ZhMHBOVW xSV 1Js ZHFULXR W UM twR IR VaHdWWIpXUZ5WAVZWYxhZM
YpHVIZWakOWTINWBGw 2YmtSQ 1LWnINSGR.OVIZaaFpX dGFVRNBY ZEVabGIGRIR MY 3Mx TAXRVZUSIpWRTVEVkd 45 INGUIVSbFZpUm twRFZG
| LkIOWIpX Y THwY Y IUBHNZEGhS TWxaR 1Zs Tmliviky 2V GxVmRTVIRCM 12r vmFYMU Sy TYZaTIMHeFRWa 1phVUIZSWE IWOUSNVkox W TBaT 2FWWIVSY
EZWTVdolUFUyeEZkMKEYUZwhGEzQIXbFpriUz SR IMuVIZivY pvFVkem VW VXhWazlUTURGWVZGaHNWMkpOZUZOVm JuQkhZakZ zViFwR VR tdFd
IMFExVKRGb 1UxTRR.SbGxhUnpWWZucFdSRmxWkU 1bGIGSnhWWRzF 2V GexSVFUbFZMY 11zWkd4dmQySkiUbF ZoTW 1oVFZGVIdTMIZHYkhGVFZ
GWnIvakl3U1ZWe 1pITIviva 1Y 20 1Q UWSjZSa ZhaZWiwsFYwwwldkRmROUm 1saEQwRjVWMWQOVDFOck 5y SmiSvikpyyiBkb 1vGbFhNWHBOU
| ek MPRw W mFRIpYYm xaWFIQIBYMIFHY 12wSESWUIdIBFRRY IRCYWRHVIZOVmholiNSYVteHZNVI SZUL SYGFEVRIZa 12 TVKZKSFVsQmEWWM 1
SVFZal 1ZsVnR.OVTVTVEZ AW 1ZWWINYMY I0Vm 5OU 2FrMyZUVYPLVDFwVIZY aFMAWE TR 20WW H ML SIEZWWGRX UM 1M 128 JkMDIW YW WWEN
FSIBWY 3R TA IR 1VYaFZhMHBQ VWSV 11sZHFUbXR W UmtwR 1RVaHdWWYIpKL 250 WZWAXhZMY pHVIZW de W TINWB Gw 2VmiSQ 1 \Wn INSGR.
| OVIZaaFpXdGFVRABY ZEVabGIGRIR WY 3Mx TAXRVZUSIpWRTVEVkd4S INGUIVSEFZpUmbwR FZGUKIOVIpX Y THw YV IUBHNZBGhSTWxaR 12sTmili
VEY 2V GxYmRTVIRCM 1ZrvmPYMU Sy TVZETINHeFR: Wa 1phVUZs\WE 1VOU SMVkox WTBoT 2FWWIVSVEZWTVdoUFUyeEZkMKaYUZwbGEzQIIXEFpri
| ZISRANUVIZIVEXVFVkemVWYXHWazIITURGWYZGaHNWMkpOZUZ0Vm JuQkhZ akZ2ViFwR VR tdFdiFEX VKR Gh 1UXTrRShGxhUnpWWVZucFdSR. |
| MWWkl 1bGIGSnhWR2zFzVGsxSVFUbFZNY 11zWhkd4dmQySkUbBFZoTW 1oVFZGYIdTMIZHYKhGVFZG\WnIVak] 3U 12W e 1pITIViNa 1Y 2D 1Q LwWS
iZ5azhaZWiwsFYwWidkRmR0Um 1saE0wRVWMWQOVDFOkSY SmiSVkpyviBkb 1V GbFhNWHBOUmxKMPkwWmFRIpYYmxaWFdIQIBYMiFHY 12
| wsE SWUIdIbFpR Y IRCYWRVIZOVmholiNSVWteHZNVIISZUUSYGFaVRIZa 12TV ZKSFYsOmPWM 115VFZ &l 1ZsVnROVTVTVEZEY 1ZWWINYMY 0V
| m SOU2FrMyVZUVYPLVD Py VIZY aFNWE TR ZWWHMYLSZWWGRXUm 1o 12ty MDY mad A WENFSIBWY 3R TA 1R VY aFZhMHBQ VWSV 1152
HFUEXRWUmtwR 1IRVaHdWVIpXU 250 WVZWVXhZMYpHVIZW ckaWTINWB Gw 2VmtSQ 1L Wn INSGROVIZaaFpXdGFVRNEY ZEVabGIGRIR WY 3MxY
| TAXRVZUSIpWRTVEVKd4S INGUIVSbFZpUmtwRFZGUKIOVIpEY THwWYVIUBHNZbGhSTWxaR 125 TmlivkyzvGx

+ If the license has been activated successfully, select if you want to install in Delphi, CBuilder or Rad Studio
IDE. There is a check to extract the required lazarus files (Lazarus requires to install the package manually).

INSTALL

ri:, sgcWWebSockets Setup -

Select Which IDE do you want to Install

0.

Select Which Versions wil install the sgcWebSockets

0 Delphi
() CBuilder
() Rad Studio

[] Install Lazarus

Options

» There are some options that can be customized every time you use the installer, press the button Options to
access these properties.

[

o

o

Build Packages: if selected, the installer will try to build the packages.

Register Paths IDE: if selected, the installer will register the required library paths in the IDE.
Register BPLs IDE: if selected and the installer has built the packages successfully, the installer will
register the design-time package in the IDE.

» The following options are only available for licenses with source code:

o

Build Intraweb: if selected, the installer will install the required Intraweb files (disabled by default).
Currently installs the Intraweb XVI version.

Build CBuilder Dproj: if selected, the installer will build the CBuilder package using the sgcWeb-
Sockets Delphi package and generating all required CBuilder files.

Use Custom Indy: (only Enterprise), if selected, the sgcWebSockets will use the Custom Indy Ver-
sion (with support for openSSL 1.1 and 3.0, TLS 1.3, ALPN...)

sgclndy Installed: if the sgcindy package has been installed and you want to use this package to
compile sgcWebSockets package, check this option.

sgcindy Compatibility Mode: if the sgcindy package has been installed in Compatibility Mode (be-
cause other packages are using Indy, like DevExpress), check this option.

Always use of the following OpenSSL API Versions: check this option if you want to force the use
of OpenSSL 1.1.1 or OpenSSL 3.0.0 APIs

Debug Mode: saves in a log file the debug message, dont' use this mode in production environment.

INSTALL

ri:, sgcWebSockets BETA Setup - X

Select the Options

Select the Options to install the sgcWebSodkets

B Euild Packages

B Register Paths IDE

B Register BFLs IDE

[Build Intraweb

[Build CBuilder Dproj

[] Use Custom Indy

[] sgeIndy Installed

[] sgcIndy Compatibility Mode

[] Always use one of the following OpenssL AP Versions:

Eat

* Now you can select which IDE Versions you want to install. Only those IDE versions that the installer detect
as installed, will be available.

ri:, sgcWebSockets ENTERPRISE Setup — x
Select Which Versions do you want to Install

|

Select Which Versions wil install the sgcWebSockets

[] Delphi XE& |
[Delphi XE7
[Delphi xE3
[] Delphi 10 Seattle

B Celphi 10.2 Tokyo
B Celphi 10.3 Rio

B Celphi 10.4 Sydney
B Delphi 11 Alexandria

* Next step is select the Platforms.

INSTALL

ri:, sgcWebSockets ENTERPRISE Setup — et

Select the Platforms ﬁj
|

Select Which Platforms will install the sgciWebSockets

B windows 32
B windows 54
[Android 32

+ Select the folder where the package will be installed. If you reinstall the package, the installer will select by
default the same folder selected in the previous install.

ri:, sgcWebSockets ENTERPRISE Setup — x

select Destination Location
Where should sgcWebSockets ENTERPRISE be installed?

[H Setup will install sgcWebSodkets ENTERPRISE into the following folder,

To continue, dick Mext. If yvou would like to select a different folder, did: Browse.

C:\Users\Sergio\Documents\esegece sgoebSodkets| Browse...

At least 17,3 MB of free disk space is required.

» Select which components to install. The registered customers have an IDE expert that allows to connect to
the eSeGeCe account from the IDE, know if there are available updates, direct access to helpdesk... and

more.

INSTALL

ri:, sgcWWebSockets Setup - bt

Select Components i
Which compaonents should be installed? [

Select the components you want to install; dear the components you do not want to
install, Click Mext when you are ready to continue.,

Full installation w
Required Files 1,4MB i
Packages

B Demo Samples 182,59 MB

B Help File 14,3 MB :

B IDE Expert 4.3MB i

B Libraries 122,0 ME

Current selection requires at least 327,8 ME of disk space.

+ Finally, it will extract the files, compile and install the package and register the required paths in the IDE.

Install Errors

» MsBuild raises an error if the Length of the Library Path is too high, to fix this issue, try to delete unused
paths from the library path. MsBuild has a limitation of 32K characters.

Install Command Line Parameters

The following commands are supported by the installer.

[SILENT
The wizard and the background window are not displayed but the installation progress is

IVERYSILENT
When a setup is very silent this installation progress window is not displayed.

[EXTRACT

The package is not installed only extracted. The path where it's installed can be customized using/
EXTRACT=path-to-folder

Use this parameter and /SILENT if you only want to extract the files without user interaction.

/IDE
This parameter allows to set which do you want to install. Set one of the following:

* delphi
 cbuilder
* radstudio

Additionally you can add Lazarus.

Example: install delphi and lazarus.

INSTALL

/ide=delphi-lazarus.

IVERSIONS
Using this parameter you can set which Rad Studio versions do you want to install. Multiple options are allowed:

D7
D2007
D2009
D2010
DXE

DXE2
DXE3
DXE4
DXE5
DXE6
DXE7
DXES
D10

D10_1
D10 _2
D10_3
D10_4
D11

D12

Use the value "All" to install all possible versions.
Example: install Delphi 10 and Delphi 12.

/versions=D10-D12

/PLATFORMS
Using this parameter you can set which Rad Studio Personalities do you want to install. Multiple options are al-
lowed:

Win32

Win64
Android
Android64
iOSDevice32
iOSDevice64
iOSSimulator
iOSSIimARMG64
0SX32
OSX64
OSXARM64
Linux64

Use the value "All" to install all possible platforms

Example: install Win32 and Win64.
/platforms=Win32-Win64

/[USERNAME

Sets the username of the subscription

IPASSWORD
Sets the password of the subscription

INSTALL

IDE Expert

If the IDE Expert is installed, you will find the following menu options:

! FRile Edit 5earch View Refactor

LDL;"L"E:.Q Q‘EVE -':i EE ’v My Account >

Support)

Project Run Component eSeGeCe MME Tools Tabs Help

Downloads

Subscriptions

Options...

» Getlt Package Manager

Open Recent B =
sgcWebSocketsD11.groupproj -
ChsoftwarehdelphitwclhsgcWebSockets\Packages® '
OAuth2_server.dproj

‘ Chsoftware\delphi'wchsgcWebSockets\Demos'20.HTTP_Protocolh03. Obuth2_5...
Oluth2_server.dproj

‘ ChsoftwarehdelphiwehsgcWebSockets\Demos 20,HTTP_Protocoh02, OAuth2_A...
HTTPAP|Server.dproj

=) Chsoftware'delphitwchsgoWebSockets\Demosy03. WebSocket_High_Performan... w
[| | . - -
s Edit Layout |:| Close Welcome screen when opening a new project

4

Paletta Projects, Model Yiew, Data Explorer, Multi-Device Preview

» MyAccount: direct access to the Downloads menu (where you can download the latest version of beta) and
to the Subscriptions, to manage your license or renew an expired license.
» Support: direct access to HelpDesk or Forum with automatic login. Documentation and Contact Us form is
available too.
» Options: in this menu you can configure the username/password of your account. Select the default brows-
er and check if there are any updates available.

INSTALL

Install Package Manually

Follow next steps to install sgcWebSockets package, screenshots use Delphi 10.3 version.

1. Open sgcWebSocketsD10_3 group project.

B sgcWebSocketsD10_3 - RAD Studio 10.3 - Welcome Page

File Edit Search View Refactor Project Bun Component MMX Tools Tabs Help

ODEeE & OrevE BE & v G v Il B GE (== B Windows32-bit «-v -
Structure Ll \Velcome Page v sgcWebSocketsD10_3.dpr.. ¥ X
_ _ B -BRSBE- T
Start Here Tutorials Documentation 45 sgcWebSocketsD10_3
| sgcWebSocketsD10_3.bpl
Ge‘t Started Open Recent °¢ Build Configurations (Release)
) 2= Target Platforms (Win32)
(® Getting Started with RAD Studio @ ocWebSocketsC10.3.grouppro) £ Contains
® Create your first Multi-Device Application _ .
Requires
® See What's New in RAD Studio 10.3 Samp|e App“cationg [delsgcWebSocketsD10_3.bpl
~L App Home Screens (Delphi)
Develop =
i App Profile Screens (Delphi)
@ Create a new Multi-Device Application (Delphi) 4 Card Panel D (Delphi
s Card Panel Demo (Delphi
D Create a new project... . .
i Login Screens (Delphi)
Eﬁ Open an existing project... 4 REST Demo (Delph)
Eﬁ QOpen a sample project... -
Object Inspector ' X
Expand and Extend
L Get Add-ons from Getle sgcWe... Model .. |Data Ex... | Multi-...
Palette X
L | ¥l
< > Madeling -~
Finalizado | Browser Delphi | Individual Files

w

2. Now we must compile first runtime packages (name starts with sgcWebSockets). There is one package for
every target platform and this depends of Delphi version, so select target platform one by one and build every
package.

3. Select win64 as Target platform and build package.

INSTALL

DEE B ARvE ®
)

Structure B X Wel g
=

Geh;;

® =

File Edit 5earch View Refactor Project Run

Component MMX Tools Tabs Help
Add to Project... Shift+F11 E: vl E = =% \indows 64-bit
Remove from Project...
Add to Repository...
View Source
Format Project Sources... [utorials Documentation

Add New Project...
Add Existing Project...

Lompile sgcWebSocketsD10_3 Ctrl+F9
Build sgcWeb5SocketsD10_3 Shift+F9

Open Recent
@ sgcWebSocketsC10_3.grouppraj

€«

cWebSocketsD10_3.d

B BEESBEYS-I
#5 sgcWebSocketsD10_3

sgcWebSocketsD10_3.bpl
°¢ Build Configurations (Release)
2= Target Platforms (Win64)
1§ Android - Android SDK 25.2....
D i05 Device 32-bit - iPhone0...

[} Syntax Check sgcWebSocketsD10_2 [0 108 Device 64-bit - iPhoneO...
® © Information for sgcWebSocketsD10_3 Samp|e App“cations D i05 Simulator - iPhoneSimul...
Method Tosicity Metrics... [macOs 32-bit - Mac05X 10...
De = i App Home Screens (Delphi) BE Windows 32-bit
fyg Compile All Projects = Windows 64-bit
o : L App Profile Screens (Delphi) =
@ Build All Projects hi) — PR P = Contains
0 Resources and Images.. & Card Panel Demo (Delphi) -
’)) ~— Requi
ﬁ Madeling Support... i Login Screens (Delphi) Sy e?,:r”:; Let=D10 2.bl
155 delsgcWebSocketsD10_3.bp
Languages 3 -
T SRS L REST Demo (Delph)
E‘ﬁ Dependencies... -
Project Page Options...
ObJECt Inspector *ox Deployment
Properties Exgrz options.. Shift+ Ctrl+F11
File Nz sgcWebSocketsD10_3. J, Cihsoftware\delphi\vchsgcWebSockets\Pack
\ P Get Add-ons from Getlt
Full Pa Chsoftware\delphiivel — sgcWe... Model ... |Data Ex... | Multi-...
Palette LS
ol 0 pel
< > Modeling -~

Finalizado | Browser Delphi | Individual Files

4. Select Android as Target Platform and build package.

DK cgc\WebSocket:

RAD Studio 10.3 - Welcome Page

m Default Layout v

File Edit 5earch View Refactor Project Run Component MMX Tools Tabs Help
DEE B PE-H 75 Addto Project.. Shift+F11 | B (== § Android ~
Lo Remove from Project...
Structure X Wel [El Addto Repository.. A
[Z) View Source HvhERoOBRBYySvI
=]l Eormat Project Sources... : Documentation 44 sgcWebSocketsD10_3
| Add New Project... libsgcWebSocketsD10_3.a
Get Iﬁ'-i Add Existing Project.. Open Recent ¢ Build Configurations (Release)
= Target Platforms (Android)
® F@ Compile sgcWebSocketsD10_3 Ctrl+F9 @ Egc—_'\l’ebsiotik"etSC1 O__?i.groupproé i Android - Android SDK 25....
® 1% Build sgcWebSocketsD10_3 Shift+F9 o h [0 108 Device 32-bit - iPhoneO...
Deploy libsgcWebSocketsD10_3.a Shift+ Ctrl+F3 E i05 Device 64-bit - iPhone0...
® D Syntax Check sgcWebSocketsD10_3 Samp|e App“cations D i05 Simulator - iPhoneSimul...
o Information for sgcWebSocketsD10 3] Q mac(5 32-bit - MacO5X 10....
Den Method Toxicity Metrics... i App Home Screens (Delphi) W?ndows 3?_-b?t
@ EE Compile Al ?rojects L App Profile Screens (Delphi) _'C'D:::i”“"‘ ba-bit
Build All Projects & Card Panel Demo (Delphi) -
D Resources and Images... i Login Screens (Delphi) ; 7 Requires
Eﬂ Modeling Support... I 2% delsgcWeb5ocketsD10_3.bpl
REST Demo (Delphi)
Eﬂ Languages 3 B
Dependencies...
Obje‘:t Inspector v R Project Page Options...
Properties EX[: Deployment
¢ [# Options.. Shift+ Ctrl+F11
- sgcWe... Model... |Data Ex.. | Multi-..
Palette X
LA | 0
< > Modeling -~
Finalizado | Browser Delphi | Individual Files "

5. Select iOS Device 32 as Target Platform and build package.

INSTALL

File

O H

Edit
s

Structure

Object Inspector

Properties

Search View Refactor

orevxg ®

3

q

=

=

]
=
a

Wel

'}

bt i

T Q00 &
00 E4&

He &1

5150 5 @

Project Run

MMX Tools Tabs

Shift+F11

LComponent
Add to Project...
Remove from Project...
Add to Repository...
View Source

Format Project Seurces...

Add New Project...
Add Existing Project...

Lompile sgcWebSocketsD10_3 Ctrl+F9
Build sgcWeb5SocketsD10_3 Shift+F9
Deploy libsgcWebSocketsD10_3.a Shift+ Ctrl+F3
Syntax Check sgcWebSocketsD10_3

Information for sgc\WebSocketsD10_3

Method Toxicity Metrics...

Compile All Projects
Build All Projects

Resources and Images...

Modeling Support...

Languages 3
Dependencies...

Project Page Options...

Deployment

Options... Shift+Ctrl+F11

Help

5 Documentation

Open Recent

Sample Applications

App Home Screens (Delphi)
App Profile Screens (Delphi)
Card Panel Demo (Delphi)

Login Screens (Delphi)

& & € & &

REST Demao (Delphi)

<

Finalizado

@ sgcWebSocketsC10_3.grouppraj

Browser

€«

cWebSocketsD10_3.d

B BERESBEY S
#5 sgcWehSocketsD10_3
libsgcWebSocketsD10_3.a
°¢ Build Configurations (Release)
£ Target Platforms (i05Device32)
1§ Android - Android SDK 25.2....
[0 i0S Device 32-bit - iPhone...
[0 108 Device 64-bit - iPhoneO...
[0 05 Simulator - iPhoneSimul...
[macOs 32-bit - Mac05X 10...
BE Windows 32-bit
BE Windows 64-bit
=7 Contains
= Requires
[delsgcWebSocketsD10_3.bpl

sgcWe... Model... |Data Ex... | Multi-..

Palette 1
lv O

Modeling

Delphi | Individual Files

P
0

6. Select iOS Device 64 as Target Platform and build package.

DK cgc\WebSocket:

RAD Studio 10.3 - Welcome Page

File

0o &

Edit
o3

Structure

Object Inspector

Properties

q

o

Search View Refactor

n®vA

=

=

g
=) i) O & &)

QU [Eegl H

CYCJORY

O
@

[HE &1

5150 5 @

roject Run

Component MMX Tools Tabs

Add to Project... Shift+F11
Remove from Project...

Add to Repository...

View Source

Format Project Sources...

m Default Layout v

Help

Fo]
nl
I+

S Documentation

[i05 Device 64-bit ™

Add MNew Project...
Add Existing Project...

Lompile sgcWebSocketsD10_3 Ctrl+F8
Build sgcWebSocketsD10_3 Shift+F3
Deploy libsgcWebSocketsD10_3.a Shift+ Ctrl+F3
Syntax Check sgcWebSocketsD10_3

Information for sgcWeb5ocketsD10 3

Method Toxicity Metrics...

Compile All Projects
Build All Projects

Resources and Images...

Modeling Support...

Languages 3
Dependencies...

Project Page Options...

Deployment

Options... Shift+ Ctrl+F11

<

Finalizado

Open Recent

@ sgcWebSocketsC10_3.grouppraj

Sample Applications
App Home Screens (Delphi)
App Profile Screens (Delphi)
Card Panel Demo (Delphi)

Login Screens (Delphi)

(Ll Ll L L L

REST Demo (Delphi)

Browser

B RRGBEY T
#5 sgcWebSocketsD10_3
libsgcWebSocketsD10_3.a
"’q Build Configurations (Release)
£ Target Platforms (i05Devicetd)
1§ Android - Android SDK 25.2....
g i05 Device 32-bit - iPhone0...
[] i0S Device 64-bit - iPhone...
[0 08 Simulator - iPhoneSimul...
[mac0$ 22-bit - MacOSX 10....
Windows 32-bit
Em Windows 64-bit
=7 Contains

=7 Requires
[delsgcWebSocketsD10_3.bpl

sgcWe... Model... |Data Ex.. | Multi-..

Palette rox
olv O 0
Modeling -~
Delphi | Individual Files "

7. Select iOS Device Simulator as Target Platform and build package.

INSTALL

File

O H

Edit
s

Structure

Object Inspector

Properties

Search View Refactor

orevxg ®

3

q

=

=

]
=
a

Wel

'}

bt i

T Q00 &
00 E4&

He &1

5150 5 @

Project Run

MMX Tools Tabs

Shift+F11

LComponent
Add to Project...
Remove from Project...
Add to Repository...
View Source

Format Project Seurces...

Add New Project...
Add Existing Project...

Lompile sgcWebSocketsD10_3 Ctrl+F9
Build sgcWeb5SocketsD10_3 Shift+F9
Deploy libsgcWebSocketsD10_3.a Shift+ Ctrl+F3
Syntax Check sgcWebSocketsD10_3

Information for sgc\WebSocketsD10_3

Method Toxicity Metrics...

Compile All Projects
Build All Projects

Resources and Images...
Modeling Support...
Languages
Dependencies...

Project Page Options...
Deployment

Options... Shift+Ctrl+F11

Help

D 105 Simulator e

Documentation

@ sgcWebSocketsC10_3.grouppraj

& & € & &

<

Finalizado

Open Recent

Sample Applications

App Home Screens (Delphi)
App Profile Screens (Delphi)
Card Panel Demo (Delphi)
Login Screens (Delphi)

REST Demao (Delphi)

Browser

vig: @v v

cWebSocketsD10_3.d

B RESBE- S
#5 sgcWehSocketsD10_3
libsgcWebSocketsD10_3.a
°¢ Build Configurations (Release)
2= Target Platforms (i0SSimulator)
1§ Android - Android SDK 25.2....
D i05 Device 32-bit - iPhone0...
[0 105 Device 64-bit - iPhoneO...
[J i0S Simulater - iPhoneSim...
[macOs 32-bit - Mac05X 10...
== Windows 32-bit
BE Windows 64-bit
77 Contains
= Requires
[delsgcWebSocketsD10_3.bpl

sgcWe... Model... |Data Ex... | Multi-..

Palette 1
lv O

Modeling

Delphi | Individual Files

P
0

8. Select MacOS 32 as Target Platform and build package.

DK cgc\WebSocket:

RAD Studio 10.3 - Welcome Page

File

0o &

Edit
o3

Structure

Object Inspector

Properties

q

o

Search View Refactor

n®vA

=

=

g
=) i) O & &)

CYCJORY

DTH;=‘,
E
2
(i]

O
@

[HE &1

5150 5 @

roject Run

Component MMX Tools Tabs
Add to Project...
Remove from Project...
Add to Repository...
View Source

Format Project Sources...

Add MNew Project...
Add Existing Project...

Lompile sgcWebSocketsD10_3
Build sgcWebSocketsD10_3

Help

Shift+F11

Ctrl+F9
Shift+Fg

Deploy bplsgcWebSocketsD10_3.dylib - Shift+ Ctrl+ F3

Syntax Check sgcWebSocketsD10_3
Information for sgcWeb5ocketsD10 3
Method Toxicity Metrics...

Compile All Projects
Build All Projects

Resources and Images...
Modeling Support...
Languages
Dependencies...

Project Page Options...
Deployment

Options...

Shift+Ctrl+F11

m Default Layout v

| §
!

Fo]
nl
I+

[macos3z-bit

Documentation

on Recent

) sgcWebSocketsC10_3.grouppraj

mple Applications

App Home Screens (Delphi)
App Profile Screens (Delphi)
Card Panel Demo (Delphi)
Login Screens (Delphi)

REST Demo (Delphi)

<

Finalizado

Browser

B RRGBEY T
#5 sgcWebSocketsD10_3
bplsgcWebSocketsD10_3.dylib
"’q Build Configurations (Release)
£ Target Platforms (05X32)
1§ Android - Android SDK 25.2....
g i05 Device 32-bit - iPhone0...
[0 i0S Device 64-bit - iPhoneO...
[0 08 Simulator - iPhoneSimul...
[J mac0S 22-bit - MacOSX 10...
Windows 32-bit
Em Windows 64-bit
=7 Contains

=7 Requires
[delsgcWebSocketsD10_3.bpl

sgcWe... Model... |Data Ex.. | Multi-..

Palette rox
olv O 0
Modeling -~
Delphi | Individual Files "

9. Select Win32 as Target Platform and build package.

INSTALL

File Edit 5Search View Refactor Project Run Component MMX Tools
|—D E’j ’Dﬁg r;i lj FQ o E Add to Project... Shift+F11
@ Removefrom Project...
Structure # ® Wel B AddtoRepository...

o

]

=3
View Source
EHJ

Format Project Seurces...

|_-]§ Add New Project...
Gel 57 Add Existing Project...

® g Compile sgcWebSocketsD10_3 Ctrl+F9
® |i| Build sgcWeb5SocketsD10_3 Shift+F9
+ Syntax Check sgcWeb5SocketsD10_3
® o Information for sgcWeb5ocketsD10_3
Method Toxicity Metrics...

De‘ ﬁ Compile All Projects
@ Build All Projects
Resources and Images...
Modeling Support...
Languages

Dependencies...

20 2f 7

Project Page Options...
ObJECt Inspector *ox Deployment
Properties Exgrz options.. Shift+ Ctrl+F11

Tabs Help
E: N | CE BE Windows 32-bit
Jutorials Documentation
Open Recent
@ sgcWebSocketsC10_3.grouppraj
Sample Applications
i App Home Screens (Delphi)
i App Profile Screens (Delphi)
hi) -
i Card Panel Demao (Delphi)
i Login Screens (Delphi)
3
L REST Dema (Delphi)

i Get Add-ons from Getlt

<

Finalizado

€«

cWebSocketsD10_3.d

B RESBE- S
#5 sgcWehSocketsD10_3
sgcWebSocketsD10_3.bpl
°¢ Build Configurations (Release)
2= Target Platforms (Win32)
1§ Android - Android SDK 25.2....
D i05 Device 32-bit - iPhone0...
[0 108 Device 64-bit - iPhoneO...
[0 05 Simulator - iPhoneSimul...
[macOs 32-bit - Mac05X 10...
=& Windows 32-bit
BE Windows 64-bit
77 Contains
= Requires
[delsgcWebSocketsD10_3.bpl

sgcWe... Model... |Data Ex... | Multi-..

Palette X
lv O e
Modeling -~
Delphi | Individual Files

10. Once all runtime packages are compiled, select design time package (name starts with dcl) and first build and
then install (design time packages only have Win32 as target platform).

felcome Page

File Edit Search View Refactor Project Run Component MMX Tools
DEE B Or -8 75 Addto Project.. Shift+F11
Lo Remove from Project...
Structure B X Wel B Addto Repository...
View Source
iﬂ] Format Project Sources...

53 Add New Project...
GelE Add Existing Project..

Fg Compile delsgeWebSocketsD10_3 Ctrl+F9

|:| Build declsgcWebSocketsD10_3 Shift+F9

D Syntax Check dclsgcWebSocketsD10_3

o Informatien for delsgcWebSocketsD10_3
Method Toxicity Metrics...

De‘ﬁ-ﬁ', Compilg All Projects
Build All Projects

D
Resources and Images...
D Modeling Support...
E‘ﬁ Languages
E‘ﬁ Qe;‘.‘tendencies..‘ .
Project Page Options...
Obje‘:t Inspector v % Deployment

Properties EX[: L-Z Options... Shift+Ctrl+F11

Tabs

m Default Layout v

Help
v I B 5= [=C 58 Windows32-bit
orials Documentation

File Mz -WebSocketsD10_3.dpr J’
Full Pa Cisoftware\delphivvel — Get Add-ons from Getlt

<

Finalizado

Open Recent

@ sgcWebSocketsC10_3.grouppraj

Sample Applications

App Home Screens (Delphi)
App Profile Screens (Delphi)
Card Panel Demo (Delphi)

Login Screens (Delphi)

& 1€ € & &

REST Demo (Delphi)

Browser

B RRESREEY S
#5 sgcWebSocketsD10_3
sgcWebSocketsD10_3.bpl
"’q Build Configurations (Release)
£ Target Platforms (Win32)
lﬁl Android - Android SDK 25.2....
g 108 Device 32-bit - iPhone0...
[0 i0S Device 64-bit - iPhone0...
[0 08 Simulator - iPhoneSimul...
[mac0s 32-bit - MacOSK 10....
Windows 32-bit
BE Windows 64-bit

T Contains

=7 Requires
[delsgcWebSocketsD10_3.bpl

Ci\software\delphi\vchsgcWebSockets\Pack
dclsgc.. Model ... |Data Ex.. | Multi-...

Palette X
LN | §e]
Modeling -~
Delphi | Individual Files

INSTALL

BX dclsgcWebSocketsD10_3 - RAD Studio 10.3 - Welceme Page

File Edit Search View Refactor Project Run Component MMX Tools Tabs Help

m Default Layout ~

LEBl 8 DEYE BE Bk v G v Il B GE[=Cc BB Windows32-bit v
Structure # ¥ WelcomePage x i
Start Here Tutorials Documentation
Get Started Open Recent
(® Getting Started with RAD Studio) :9cWebSocketsC10 3grouppro)
® Create your first Multi-Device Application
(®) See What's New in RAD Studio 103 Sample Applications
4 App Home Screens (Delphi)
Develop =
i App Profile Screens (Delphi)
Create a new Multi-Device Application (Delphi)
D PP P & Card Panel Demo (Delphi)
D Create a new project... . .
ﬁ i Login Screens (Delphi)
Open an existing project...
P g prel L REST Dema (Delphi)
Eﬁ Open a sample project...
Object Inspector roX
Properties Expand and Extend
File Nz -WebSocketsD10_3.dpr J’
Full Pa Chsoftware\delphiivel — Get Add-ons from Getlt
< >
Finalizado | Browser

Cisoftware\delphitvchsgcWebSockets\Pack
dclsgc.. Model ... |Data Ex.. | Multi-...

Palette
olv O

Modeling
Delphi | Individual Files

Run Without Debugging
Install

Build Sooner
Build Later

Ctrl+Up

Ctrl+Down
Show in Explorer

Add...
Add New
Add Reference...

Remove File...

Remove Project

Save
Save As...

Rename
Add to Version Control

Activate
View Source Ctrl+V
Sort By

Dependencies...

Compare

Modeling Support...

Format Project Sources...

Options...

P ox
0
~

w

11. If installation is successful you will see a message with all components installed.

Information

Package

has been installed.

ChUsersh PublichDocuments\Embarcadero.. \dclsgcWebSocketsD10_3.bpl

The following new compenent(s) have been registered:

TsgclWWebSocketClient, TsgolWW5PClient_Dataset,

TsgclWWSPClient_sgc, TsgcWebSocketClient,

TsgcWebSocketClient_SocketlO, TsgcWebSocketClient WinHTTP,
TsgcWebSocketHTTPServer, TsgcWebSocketl cadBalancerServer,

TsgeWebSocketProxyServer, TsgeWebSocketServer,

TsgcWebSocketServer HTTPAPI, TsgcW3AP|_Binance,
TsgeWSAPI_Bitfinex, TsgcWSAPI_Bitrmex, TsgcWSAPI_Bitstamp,
TsgcWSAPI_Bittrex, TsgcWSAPI_Blockchain, TsgcWSAPI_Cex,
TsgcWSAPI_Huchbi, TsgcWSAPI_Pusher, TsgcW5SAPI_SignalR,
TsgcWSAPI SignalRCore, TsgcWSAPI_SocketlO, TsgcWSPClient_Broker,
TsgcW5PClient_Dataset, TsgcWSPClient_Files, TsgeWSPClient_MOTT,
TsgcW5PClient_Presence, TsgeW5SPClient_sge, TsgcWSPClient_STOMP,
TegcWSPClient_STOMP_ActiveMQ, TegcW5SP Client_STOMP_RabbitMC,

TegeWSPClient_WAMP, TsgcWSPClient_WAMPZ,

TsgeWsPServer_AppRTC, TsgcW5PServer_Broker, TsgeW5P5erver_Dataset,
TsgeW5P5erver_Files, TsgeW5PServer_Presence, TsgeWSPServer_sge,

TsgcW5P5erver WAMP, TsgcWSPServer_ WebRTC,

et

12. Then, you only must to add the Directory where are the compiled files to your Rad Studio Library Path. You
must add this for every Target Platform (win32, win64, osx64...)

INSTALL

(3 Directories >

Ordered list of Library paths:
S(BDSUSERDIR)\mports ”~
S(BDS)\mports
SBDSCOMMONDIRMDep
S(BDSMinclude
CheoftwarehdelphivvelsgcWebSockets\libD10_Fwin32

Greyed items dencte invalid path.
Chsoftware\delphitvelisgeWebSockets\ libD10_Fwin32 =

Replace Add Delete Delete Invalid Paths

8].4 Cancel Help

* If you are using the Datasnap servers, these are NOT included in sgcWebSockets package because cannot be
installed, are only runtime components. In this case, you must add to your library path the Source folder too.

INSTALL

Install Errors

Sometimes you may get some errors installing components.

Intraweb package not found

sgcWebsockets is compiled using the default Intraweb version provided with Delphi. If you don't have Intraweb in-
stalled, you can modify sgcVer.inc file (located in Source folder).

Search your Delphi version and comment all compiler defines for Intraweb (starts with IW). Example: for Delphi
10.4 comment all compiler defines for Intraweb

{$IFDEF VER340} { Delphi 10.4}
{$DEFINE D2006}
{$DEFINE D2007}
{$DEFINE D2009}
{$DEFINE D2010}
{$DEFINE DXE}
{$DEFINE DXE2}
{$DEFINE DXE3}
{$DEFINE DXE4)}
{$DEFINE DXE5}
{$DEFINE DXE6}
{$DEFINE DXE7}
{$DEFINE DXE8}
{$DEFINE D10}
{$DEFINE D10_1}
{$DEFINE D10_2}
{$DEFINE D10_3}
{$DEFINE D10_4}
{$DEFINE INDY10_1}
{$DEFINE INDY10_2}
{$DEFINE INDY10_5_5}
{$DEFINE INDY10_5_7}
{$DEFINE INDY10_5_8}
{$DEFINE INDY10_6}
{$DEFINE INDY10_6_0_5122}
{$DEFINE INDY10_6_0_5169}
{$DEFINE INDY10_6_2_ 5263}
{$DEFINE INDY10_6_2_ 5366}
{$DEFINE INDY10_6_2_D10_4}

{$IFNDEF BCB}
{$IFNDEF MACOS}
{$IFNDEF ANDROID}
{.$DEFINE IWIX}
{.$DEFINE IWXI}
{.$DEFINE IWXIV}
{.$DEFINE IWXV}

{$ENDIF}

{$ENDIF}

{$IFNDEF NEXTGEN}
{$DEFINE SGC_JSON_INTF}

{$ENDIF}

{$ENDIF}
{$ENDIF}

If Intraweb is installed but it's a different version from the default that comes with Delphi, maybe your Intraweb
package has a different name. Then open sgcWebSockets runtime package and change Intraweb name in project
source.

INSTALL

File Edit Search View Refactor Project Run Component MMX Tools Tabs Help
CEBl B DEYE BE B v 0OV Il B G=[=cC: | BB Windows32-bit @
Structure % X Welcome Page sgcWebSocketsD10_3 X ~ sgcWebSocketsD10_3.dpr.. ¥ X
S 5 P B BREESBEY B
— | name... ~ | (return) type... = | LY .schebSOCketsDWj
. - — WebSocketsD10_3.bpl
search.. || et | o ‘ | M | ‘ 5 | k= | - | S :::Euild Cnnfiguratinn;(:eleasej
[rerd 2= Target Platforms (Win32)
wel, ~ 1ﬁl Android - &ndroid SDK 25.2....
weli, D i05 Device 32-bit - iPhone0...
veling, B [i05 Device 64-bit - iPhone...
N 7_ WIK: D i05 Simulator - iPhoneSimul...
: {SELSE} [mac0s 32-bit - Mac0SX 10...
dbrtl, BE Windows 32-bit
- {SENDIF} BE Windows 64-bit
{SENDIF} 77 Contains
{SENDIF} -
{SIFNDEF RNDROID} - .
inet, Requires
{SENDIF} & delsgcWebSocketsD10_3.bpl
IndyCore,
IndySystem,
IndyProtocols;
Object Inspector roX
Properties - | contains
File Ne -WebSocketsD10_3.dpr ::g:;;f‘;l;]].\ETFi:ﬂ;ééESDurce\sgcJSC}N.pas', Cihsoftware\delphi\vchsgcWebSockets\Pack
Full Pa C:\software\delphitvcl . {SIFNDEF ANDROID} sgcWe... Model ... |Data Ex... |Mu|t|-.‘.
sgcIWWebSocket in '..\Source\sgcIWWekSockst.pas',
sgcIWWebSocket_Client in '..\source\sgcIWWebSocket_Client.pas’', Palette r X
sgcIWWebSocket Protocol Base im '..\Source\sgcIWWebSocket Protocol Base
- schW‘WEbSDcket:Protacol:Dataset_Client in '. .\SD'.u'ce\sgci[ﬁ'ﬂebSockeE_Prcv Ej v /O
< > Modeling -~
@@ | 42: 1 Insert Code History Delphi | Individual Files -

Indy Package not found

sgcWebSockets requires Indy to install components in your IDE. Trial installation is compiled against Indy library
provided with Delphi / CBuilder, so if you get a message like this:

[DCC Fatal Error] dclsgcWebSocketsDX.dpk(31): E2202 Required package 'IndyCore' not found

Most probably you have a newer Indy version, so in order to install trial you must delete this version and install
built-in indy version using Delphi / CBuilder setup.

If you have full source code, then you only must check:

1. Required Indy packages: IndyCore, IndySystem and IndyProtocols. If you have a newer Indy version, most prob-
ably packages have a different name (including version), so access to menu "Component / Install Packages" and
check which name have Indy packages and change accordingly in the project.

2. sgcWebSockets supports several Indy versions, there are compiler defines to allow compile for every Indy ver-
sion. Open sgcVer.inc, located in the source folder, and change accordingly for your Indy version (is gsldVersion of
IdVers.inc Indy file). Some compiler defines:

{$DEFINE INDY10_1}
{$DEFINE INDY10_2}
{$DEFINE INDY10_5_5}
{$DEFINE INDY10_5_7}
{$DEFINE INDY10_5_8}
{$DEFINE INDY10_6}
{$DEFINE INDY10_6_0_5122}
{$DEFINE INDY10_6_0_5169}
{$DEFINE INDY10_6_2_5263}
{$DEFINE INDY10_6_2_5366}
{$DEFINE INDY10_6_2_D10_4}

INSTALL

c00000005 ACCESS_VIOLATION in CBuilder

If you compile a project using CBuidler and you get this error, set the following options in your project:

Project > Options > C++ Linker
uncheck "Link with Dynamic RTL"

Project > Options > Packages > Runtime Packages
uncheck "Link with runtime packages"

Unable to find package import: sgcWebSocketsCXXX.bpi in CBuilder Win64

When you compile runtime package for win64, you must compile Release and Debug.

Ambiguous reference System.ZLib.hpp and IdZLib.hpp CBuilder

sgcWebSockets Standard and Professional uses Indy for some components and Indy doesn't make use of ZLib
unit, uses its own copy of ZLib: IdZLib, IdZLibHeaders... the project is linking to ZLib and indy ZLib units, so when
compile, compiler doesn't know which is the correct reference because names are the same. There are 2 solutions:

1. Search where is included a link to System.ZLib.hpp and delete or move after IdZLibHeaders.hpp
2. Use the following conditional defines NO_USING_NAMESPACE_SYSTEM_ZLIB or
DELPHIHEADER_NO_IMPLICIT_NAMESPACE_USE in your projects options to avoid the use of System.Zlib.hpp

Ambiguous reference System.ZLib.hpp and sgcldZLib.hpp CBuilder

sgcWebSockets Enterprise uses a custom Indy version for some components and Indy doesn't make use of ZLib
unit, uses its own copy of ZLib: sgcldZLib, sgcldZLibHeaders... the project is linking to ZLib and indy ZLib units, so
when compile, compiler doesn't know which is the correct reference because names are the same. There are 2 so-
lutions:

1. Search where is included a link to System.ZLib.hpp and delete or move after sgcldZLibHeaders.hpp
2. Use the following conditional defines NO_USING_NAMESPACE_SYSTEM ZLIB or
DELPHIHEADER_NO_IMPLICIT_NAMESPACE_USE in your projects options to avoid the use of System.Zlib.hpp

Undefined reference to vTable for Sgcwebsocket... on CBuilder and Android

Use the following workarround to fix the error. Add the file libsgcwebsocketsC*.a which is located in the dcp/android
default folder to your project using the menu "Project/ Add to Project".

Example: for CBuilder 11, add to your project the file "libsgcWebSocketsC11.a" which is located by default in the
folder "C:\Users\Public\Documents\Embarcadero\Studio\22.0\DCP\Android\Release".

Checksum changed under Lazarus

This error can be raised while trying to install the components under Lazarus if the profile to build the IDE is not
"Optimized IDE". The trial is compiled with the profile "Optimized IDE".

INSTALL

Cannot find X used by Y, incompatible ppu

Try the following workarround "Run / Clean up and rebuild" from the menu option.

INSTALL

Configure Install

In the source folder, there is a file called sgcVer.inc which includes all compiler defines for all Delphi, CBuilder and
Lazarus IDEs.

Here you can customize your configuration for Intraweb, Indy... usually there is no need to do any changes, un-
less you want enable/disable some features.

Change carefully the compiler defines and contact us if you require assistance.

For every Delphi version, there is a section where you can configure all compiler defines, an example for Delphi
10.4

{$IFDEF VER340} { Delphi 10.4}
{$DEFINE D2006}
{$DEFINE D2007}
{$DEFINE D2009}
{$DEFINE D2010}
{$DEFINE DXE}
{$DEFINE DXE2}
{$DEFINE DXE3}
{$DEFINE DXE4)}
{$DEFINE DXE5}
{$DEFINE DXE6}
{$DEFINE DXE7}
{$DEFINE DXE8}
{$DEFINE D10}
{$DEFINE D10_1}
{$DEFINE D10_2}
{$DEFINE D10_3}
{$DEFINE D10_4}
{$DEFINE INDY10_1}
{$DEFINE INDY10_2}
{$DEFINE INDY10_5_5}
{$DEFINE INDY10_5_7}
{$DEFINE INDY10_5_8}
{$DEFINE INDY10_5_9}
{$DEFINE INDY10_6}
{$DEFINE INDY10_6_0_5122}
{$DEFINE INDY10_6_0_5169}
{$DEFINE INDY10_6_2_5263}
{$DEFINE INDY10_6_2_5366}
{$DEFINE INDY10_6_2_D10_4}

{$IFNDEF BCB}
{$IFNDEF MACOS}
{$IFNDEF ANDROID}
{.$DEFINE IWIX}
{.$DEFINE IWXI}
{.$DEFINE IWXIV}
{.$DEFINE IWXV}

{$ENDIF}

{$ENDIF}

{$IFNDEF NEXTGEN}
{$DEFINE SGC_JSON_INTF}

{$ENDIF}

{$ENDIF}
{$ENDIF}

INSTALL

Indy

There are some compiler defines for Indy library. This depends on Indy version installed, by default is configured for
Indy package included with Delphi. Indy version is gsldVersion parameter of IdVers.inc Indy file.

Intraweb

If Intraweb is not installed, just comment compiler defines for Intraweb (those who starts with IW...)

INSTALL

Install sgcindy Package

Setup Installation

*Requires Windows Vista as minimum (Windows 2000, XP and Server 2003 are not supported).

The users who have purchase a license can install the sgcindy package using the setup. Find below step by step
how install the package.

» Execute the Installer.
+ First you must set your username/password of your private eSeGeCe account. This only must be entered

one time, the next time you use the setup, the installer will read the latest value.

e s m = e — e

riq sgclndy Setup — >

{

sgcIndy Registration [
Enter Username and Password

user@gmail.com

User Mame

Pasﬂwnrd LA L L L L L]l

Forgot your password? Forgot your username?

+ If the user has login successfully, select if you want to install in Delphi, CBuilder or Rad Studio IDE.

INSTALL

kg sgeindy Setup = et

Select Which IDE do you want to Install ";—‘:ﬁ

Select Which Versions wil install the sgcIndy

0 Delphi
() CBuilder
() Rad Studio

Options

» There are some options that can be customized every time you use the installer, press the button Options to
access these properties.

[

o

o

Build Packages: if selected, the installer will try to build the packages.

Register Paths IDE: if selected, the installer will register the required library paths in the IDE.
Register BPLs IDE: if selected and the installer has built the packages successfully, the installer will
register the design-time package in the IDE.

Remove Default Indy Version: if selected, the installer will uninstall first the Standard Indy version
that comes with Rad Studio.

Restore Default Indy Version when Uninstalling: if selected, the installer rollback the uninstalled
Standard Indy version when the package is uninstalled.

Compatibility Mode: if selected, the dcp files are compiled without version and are copied to the Em-
barcaderol/lib folder. Check this option if other packages are making use of Indy packages, like Dev-
Express.

Always use of the following OpenSSL API Versions: check this option if you want to force the use
of OpenSSL 1.1.1 or OpenSSL 3.0.0 APIs

INSTALL

kg sgeindy Setup = et

Select the Options

Select the Options to install the sgcIndy

B Euild Packages

B Register Paths IDE

B Register BFLs IDE

B Femove Default Indy Version

B Festore Default Indy Version when Uninstaliing

[] Compatibility Mode: Remove Version, Copy DCPs to lib folder ...
[] Always use one of the following OpenSSL API Versions:

() OpenssL1.1.1

0 oOpenssL 3.0.0

* Now you can select which IDE Versions you want to install. Only those IDE versions that the installer detect
as installed, will be available.

kg sgeindy Setup = >

|

Select Which Versions do you want to Install

Select Which Versions wil install the sgcIndy

[] Delphi XE&
[Delphi XE7
[Delphi xE3

.......................................

B Delphi 10. 1 Berlin
B Celphi 10.2 Tokyo
B Celphi 10.3 Rio

B Celphi 10.4 Sydney
B Delphi 11 Alexandria

* Next step is select the Platforms.

INSTALL

kg sgeindy Setup = et

Select the Platforms

Select Which Platforms will install the sgcIndy

B windows 32
B windows 54
[] Android 32

[] i05 Device 64

[05 Simulator ARM 64

‘

+ Select the folder where the package will be installed. If you reinstall the package, the installer will select by
default the same folder selected in the previous install.

kg sgeindy Setup = >

Select Destination Location

Where should sgcIndy be installed?

‘ [H Setup will install sgcIndy into the following folder.

To continue, dick Mext. If yvou would like to select a different folder, did: Browse.

C:\Users\SergioDocuments'esegece\sgcindy Browse...

‘ At least 23,0 MB of free disk space is required. |

» Select which components to install.

INSTALL

kg sgeindy Setup = et

Select Components
Which compaonents should be installed?

Select the components you want to install; dear the components you do not want to
install, Click Mext when you are ready to continue.,

Full installation w
Required Files
Packages 13,9 MB _
B other Files 14,7 ME '

Current selection requires at least 37,6 ME of disk space.

"

+ Finally, it will extract the files, compile and install the package and register the required paths in the IDE.

Install Errors

» MsBuild raises an error if the Length of the Library Path is too high, to fix this issue, try to delete unused
paths from the library path. MsBuild has a limitation of 32K characters.

Manual installation

If Indy is already installed, it needs to be uninstalled first.

1. Remove the pre-compiled BPL files - dclindyCoreX.bpl and dclindyProtocolsX.bpl - from the IDE via the
"Components > Install Packages" dialog.

2. Then delete all of the existing binaries (IndySystemX., IndyCoreX., IndyProtocolsX., dclindyCoreX., and
dclindyProtocolsX.*) as well as delete any Indy 10 source files, if present.

3. Be sure to check for files in the IDE's \bin, \lib, and \source folders, \Indy subfolders, and OS system fold-
ers."

To build the sgclndy package, you can either

1. (Only CBuilder) Use the command-line FULLC#.BAT script that corresponds to your CBuilder version.
2. Open the individual DPK files in the IDE and compile them, in the following order:

1. IndySystemX.dpk (in Lib\System)

2. IndyCoreX.dpk (in Lib\Core)

3. IndyProtocolsX.dpk (in Lib\Protocols)

4. dclindyCoreX.dpk (in Lib\Core)

5. dclindyProtocolsX.dpk (in Lib\Protocols)

Once the Indy packages have been built, go to the menu Components / Install Packages and install the Indy De-
sign-Time Packages

1. dclindyCore*.bpl

INSTALL

2. dclindyProtocols*.bpl

Finally set the paths in your IDE to the sgcindy Packages.

INSTALL

Configure ZLib

ZLib version: 1.2.12

sgcWebSockets uses the ZLib compression when WebSocket Compression PerMessage Deflate Extension is en-
abled. By default, ZLib is statically linked with your application so there is no need to deploy the ZLib library.

If you want to use a specific library, add the following Conditional Define to your project:
SGC_DYNAMICLOAD_ZLIB

As an alternative, you can edit the file sgcindy.inc (located in the source folder) and add the following line
{$DEFINE SGC_DYNAMICLOAD_ZLIB}

Finally, you must set the location where is the ZLib library, to do this, use the following method and pass the Full
Path (without the name of the library) where is located

sgcldZLibHeaders.ldZLibSetLibPath('c:\software\zlib');

*This configuration is only valid for sgcWebSockets Enterprise Edition with Source code.

QUICKSTART

QuickStart

WebSockets Components

Creating a new WebSocket Server or WebSocket client is very simple, just create a new instance of the class, con-
figure the Host / Port and set the property Active = true to start the process.

QuickStart WebSockets

HTTP Components

The HTTP/2 protocol allows to create much faster HTTP Servers / Clients than using HTTP/1 protocol. The HTTP/2
Server is included in the WebSocket server while the HTTP/2 client is a dedicated components which implements
the HTTP/2 protocol.

QuickStart HTTP

Threading Flow

sgcWebSockets components are threaded, which means that connections runs in secondary threads. By de-
fault, the main events are dispatched on the main thread, this is useful when the number of events to dispatch is
low, but for better performance you can configure the components where the events are dispatched in the con-
text of connection thread. Read the following article which explains how configure threading flow:

How Configure NotifyEvents

How Build Applications

Build Applications with sgcWebSockets library is very easy, just follow the next tips which will helps to successfully
build your application.

Build

Fast Performance Server

sgcWebSockets has 2 server implementations: 1 based on Indy server and another based on HTTP.SYS Mi-
crosoft Server. The latest is the recommended for High Performance Servers which requires to handle thousands
of concurrents connections. Check the following article which explains how improve server performance.

Fast Performance Server

Memory Manager

Choose an adequate memory manager can improve the performance of your application, check the following article
which shows a comparison between some memory managers

Memory Manager

QUICKSTART

OpenSSL

When your application requires secure connections, usually openSSL libraries are required to encrypt communi-
cations, follow the next steps to configure successfully your application with openSSL libraries.

Configure OpenSSL

Indy

The Indy library is used as a base in some sgcWebSockets components, sgcWebSockets Enterprise edition in-
cludes a custom indy version which allows to use openSSL 1.1.1 and openSSL 3.0.0, ALPN...

Indy

Linux (Lazarus)

If you compile a Lazarus project for Linux and you get this message:

Semaphore init failed (possibly too many concurrent threads)

Just add cthreads unit to your project file.

QUICKSTART

QuickStart | WebSockets

Let's start with a basic example where we need to create a Server WebSocket and 2 client WebSocket types: Ap-
plication Client and Web Browser Client.

WebSocket Server

1. Create a new Window Forms Application
2. Drop a TsgcWebSocketServer onto a Form.
3. On Events Tab, Double click OnMessage Event, and type following code:

procedure OnMessage(Connection: TsgcWSConnection; const Text: string);
begin

ShowMessage('Message Received From Client: ' + Text);
end;

4. Drop a Button onto the Form, Double Click and type this code:

TsgcWebSocketServerl.Active := True;

WebSocket Client

1. Create a new Window Forms Application
2. Drop a TsgcWebSocketClient onto a Form and configure Host and Port Properties to connect to Server.
3. Drop a TButton in a Form, Double Click and type this code:

TsgcWebSocketClientl.Active := True;

4. Drop a Button onto the Form, Double Click and type this code:

TsgcwWebSocketClientl.WriteData('Hello Server From VCL Client');

Web Browser Client

1. Create a new HTML file

2. Open file with a text editor and copy following code:

<html>

<head>

<script type="text/javascript" src="http://host:port/sgcwebSockets.js"></script>
</head>

<body>

0pen
Send
</body>

</html>

You need to replace host and port in this file for your custom Host and Port!!

3. Save File and that's all, you have configured a basic WebSocket Web Browser Client.

QUICKSTART

How To Use

1. Start Server Application and press button to start WebSocket Server to listen new connections.

2. Start Client Application and press button1 to connect to server and press button2 to send a message. On Server
Side, you will see a message with text sent by Client.

3. Open then HTML file with your Web Browser (Chrome, Firefox, Safari or Internet Explorer 10+), press Open to
open a connection and press send, to send a message to the server. On Server Side, you will see a message with
a text sent by Web Browser Client.

Linux Compiler

Simple Server example (listening on port 5000).

program sgcWebSockets_linux;
{$APPTYPE CONSOLE}
{$R *.res}

uses
System.SysUtils, sgcWebSocket;

var
oServer: TsgcWebSocketServer;

begin
try
oServer := TsgcWebSocketServer.Create(nil);
oServer.Port := 5000;
oServer.Active := True;
while oServer.Active do
Sleep(10);
except
on E: Exception do
Writeln(E.ClassName, ': ', E.Message);
end;
end.

Linux (Lazarus)

If you compile a Lazarus project for Linux and you get this message:

Semaphore init failed (possibly too many concurrent threads)

Just add cthreads unit to your project file.

QUICKSTART

QuickStart | HTTP

Let's start with a basic example where we need to create a HTTP/2 Server and a HTTP/2 client.

HTTP/2 Server

1. Create a new Window Forms Application
2. Drop a TsgcWebSocketHTTPServer onto a Form.
3. On Events Tab, Double click OnCommandGet Event, and type following code:

procedure OnCommandGet(AContext: TIdContext; ARequestInfo: TIdHTTPRequestInfo;
AResponseInfo: TIdHTTPResponseInfo);

begin
if ARequestInfo.Document = '/' then
begin
AResponseInfo.ContentText := '<html><head><title>Test Page</title></head><body></body></html>";
AResponseInfo.ContentType := 'text/html';
AResponseInfo.ResponseNo := 200;
end;
end;

4. By default, the server only enables HTTP/1 connections, so enable HTTP/2 options in the property
HTTP20Options.Enabled = true, and then configure the SSL Options. Secure connections require OpenSSL li-
braries.

TsgcWebSocketHTTPServerl.Port := t443;
TsgcWebSocketHTTPServerl.SSL := true;

TsgcWebSocketHTTPServerl.SSLOptions.CertFile := 'server cert file';
TsgcWebSocketHTTPServerl.SSLOptions.KeyFile := 'server private key file';
TsgcWebSocketHTTPServerl.SSLOptions.RootCertFile := 'server root cert file';

TsgcWebSocketHTTPServerl.SSLOptions.OpenSSL_Options.APIVersion := 0slAPI_1 1;
TsgcWebSocketHTTPServerl.SSLOptions.Port := 443;
TsgcWebSocketHTTPServerl.SSLOptions.Version := tlsl_3;

5. Drop a Button onto the Form, Double Click and type this code:

TsgcWebSocketHTTPServerl.Active := True;

HTTP/1 Client

1. Create a new Window Forms Application
2. Drop a TButton in a Form, Double Click and type this code:

var
OHTTP1: TsgcHTTP1Client;
begin
OHTTP1 := TsgcHTTP1Client.Create(nil);
Try
ShowMessage (oHTTP1.Get('https://127.0.0.1"));
Finally
OHTTP1.Free;
End;

end;

QUICKSTART

HTTP/2 Client

1. Create a new Window Forms Application
2. Drop a TButton in a Form, Double Click and type this code:

var
OHTTP2: TsgcHTTP2Client;
begin
OHTTP2 := TsgcHTTP2Client.Create(nil);
Try
ShowMessage(oHTTP2.Get('https://127.0.0.1"));
Finally
OHTTP2.Free;
End;

end;

QUICKSTART

QuickStart | Threading Flow

sgcWebSockets components are threaded, for example, TsgcWebSocketHTTPServer (based on Indy library) cre-
ates one thread for every connection while TsgcWebSocketServer_HTTPAPI (based on Microsoft HTTP.SYS)
runs a pool of threads and the connections are handled by this pool of threads (max of 64 threads) and TsgcWeb-
SocketClient runs his own thread to run asynchronously the responses from WebSocket server.

By default, there is a property called NotifyEvents, which has the value neAsynchronous. This means that when a
WebSocket client receives a message, this message is queued and is dispatched on the main thread by OS later.
This runs well for clients that doesn't receive a lot of messages and for easy of use, because doesn't require to syn-
chronize with the main thread when you want for example update a control of your form.

But when the server / client must process several messages in short period of time, it's better change this threading
flow to another where the events are dispatched in the context of connection thread. To do this, just set Noti-
fyEvents property to neNoSync, this way, when for example a client receives a message from server, this message
will be dispatched in the context of a secondary thread, so if you need to update a control of your form, first syn-

chronize with the main thread and the update the form control (because form controls are not thread safe). The
same applies if you want access to a shared object, you need to implement your own synchronization methods.

Threading Flow Easy Mode (NotifyEvents = neAsynchronous) and Low Performance

This is the threading flow by default and it's usually used on demo samples. Select this mode if you don't expect to
handle several messages per seconds and you need update Form Controls or access shared objects.

NotifyEvents = neAsynchronous

Threading Flow Best Performance (NotifyEvents = neNoSync)

Set this threading flow for server components and for clients which needs a high performance because you expect
will require to handle several messages. Using this configuration, the events are dispatched in the context of con-
nection thread, so in order to update a Form control, first synchronize with the main thread.

NotifyEvents = neNoSync

How Synchronize Main Thread

You can synchronize with Main Thread calling TThread.Synchronize or TThread.Queue, both methods can be used
and select one or another depends of how you want implement synchronization.

TThread.Synchronize

This method is blocking, which means that when you call Synchronize, the code blocks tills synchronize with the
main thread.

TThread.Queue

This method is non blocking, so when you call queue, the message is queued and will be dispatched later.

Example Code

Update a Memo with the messages received from WebSocket Client.

procedure OnClientMessage(Connection: TsgcWSConnection; Text: String);
begin
TThread.Queue(nil,

QUICKSTART

procedure

begin
memol.lines.add(Text);

end);

end;

QUICKSTART

QuickStart | Build

Build an application with sgcWebSockets library is very easy, only keep in mind if your components require
openSSL libraries or not. If your applications require secure connections, openSSL libraries must be deployed (ex-
cept if you use SChannel for windows on Client Components).

For windows applications, is enough to deploy the openSSL libraries in the same folder where application is lo-
cated.

For other personalities check the following articles:

* Build OSX Application
 Build Android Application
+ Build iOS Application

QUICKSTART

Build | OSX Application

In order to build a OSX Application with sgcWebSockets library you must follow the steps from Embarcadero web-
site to build a OSX Application.

Install PASServer in MacOS

http://docwiki.embarcadero.com/RADStudio/Sydney/en/PAServer,_the_Platform_Assistant_Server_Application

Obtain a Developer ID Certificate

Login with a valid Apple Developer Account to https://developer.apple.com and create a new "Developer ID Appli-
cation" from Certificates menu.

http://docwiki.embarcadero.com/RADStudio/Rio/en/MacOS_ Notarization

Create a new Apple Id

Then go to https://appleid.apple.com/account to create a new Apple Id

Configure Provisioning

Finally, open the menu Project / Options / Provisioning and fill the required data to notarize a OSX Application.

Provisioning

Target

Release configuration - macO5 64-bit platform N Apply... Save...

Build type
mac05 64-bit - Developer ID e

Apple 1D

|your@email.com |

App-specific Password

Developer ID Application Certificate

|DeveloperID Application: |

Additicnal options to pass to the notarization command-line tool

[] Attach a ticket to the notarized application to allow it to run offline

If your project requires some libraries, don't forget to include in the menu Project / Deployment. Set Remote Path
to "Contents\MacOS\"

Local Path Local Name Type Configurat... Platforms Remote Path Remote Name Remote Status Overwrite
liberypto.1.0.0.dylib File Release [OSKE4] Contents\MacO5\ libcrypto.1.0.0.dylib Mot Connected Always
OSKEL\Releasel, sgcClienthMobile ProjectOutput Release [O5K64] Contents'MacOS\ sgcClientMobile Mot Connected Always
v n elphi_l LICNS roject €S elease ontents\Resources’ sgcClientMobileicns ot Connecte lways
S(BDS)\binY delphi_PROJECTICNS.i ProjectOSXR: Rel [O5KE4] C R 33 gcClientMobile.i Not C d Alway:
od eleaze’ sgcClientMobile.info.plist roject nf... elease ontents nfo.plist ot Connecte lway's
0564\ Release\ gcClientMaobileinfo.pli ProjectOSXInf Rel [O5X64] C 1) Infa.pli Mot C d Alway:
v/ 1bssl.1.0.0.dylh elease ontentsiMac 1bssl.1.0.0.dyh ot Connecte lways
libssl. 1.0.0.dylib Rel [O5X64] C A MacO5y libssl.1.0.0.dylib Not Ci d Al
OSKEd\Release’, sgcClientMobile.entitle.. ProjectOSXEnt.. Release [O5X64] WA sgcClientMobile.entitle.. MNot Connected Always

These libraries will be automatically signed when the application is notarized, you can check if the library has been
signed using the following command:

codesign -dv --verbose=4 libcrypto.1.1.dylib

http://docwiki.embarcadero.com/RADStudio/Sydney/en/PAServer%2c_the_Platform_Assistant_Server_Application
http://docwiki.embarcadero.com/RADStudio/Rio/en/MacOS_Notarization
https://appleid.apple.com/account

QUICKSTART

Read more about How Configure openSSL OSX.

QUICKSTART

Build | Android Application

In order to build a Android Application with sgcWebSockets library you must follow the steps from Embarcadero

website to build an Android Application.

Creating an Android App

http://docwiki.embarcadero.com/RADStudio/Sydney/en/Creating_an_Android_App

Project Deployment

If your project requires some libraries, don't forget to include in the menu Project / Deployment. Set Remote Path

to ".\assets\internal"

Local Path

S{BDS)\bin\Artworl...
§(BDS)\bin\Artwork\,..
LA appsiThird-pa...
S(BDS)udib\android\...

S(BDS)\bin\Artwork)...

$(BDS)\bin\Artworkh...
S(BDS)\bin\Artwork)...
S(BDS)\bin\Artworkh...
S(BDS)udib\android\...

LA appsiThird-pa...

Read more about How Configure openSSL Android.

Local Name

FM_Launcherlcon_T2x7...
FM_Splashlmage_960x7...

libsslso
libnative-activity.so

FM_Splashimage_840x4...

FM_Launcherlcon_48x4..,
FM_Splashlmage_470x3...
FM_Splashlmage_426x3...

libnative-activity.so

libcrypto.so

Type
Android_Laun...

Android_Splas...

File

AndroidLibnat...

Android_Splas...

Android_Laun...

Android_Splas...
Android_Splas...
AndroidLibnat...

File

Configurat...
Release
Release
Release

Release
Release
Release
Release
Release

Release

Release

Platforms

[AndroidB4]
[Android&4]
[Androidbd]
[Androidbd]

[Android&4]
[Android&4]
[Android&4]
[Androidgd]

[Androidbd]

[Android&4]

Remote Path
res\drawable-hdpil,

restdrawable-xlarge,

! \assets\internal

library\lib\armeabil,
restdrawable-largel
resdrawable-rmdpi\,
restdrawable-normall
reshdrawable-smally

library\lib\armeabi-v7a\

Aassetshinternal

Remote Mame
ic_launcher.png

splash_image.png

¢ libssl.so

libsgcClientMobile.so
splash_image.png
ic_launcher.png
splash_image.png
splash_image.png

libsgcClientMobile.so

libcrypto.so

http://docwiki.embarcadero.com/RADStudio/Sydney/en/Creating_an_Android_App

QUICKSTART

Build | iOS Application

In order to build a iOS Application with sgcWebSockets library you must follow the steps from Embarcadero web-

site to build a iOS Application.
Install PASServer in MacOS
http://docwiki.embarcadero.com/RADStudio/Sydney/en/PAServer,_the_Platform_Assistant_Server_Application

Obtain a iOS Development Certificate

Login with a valid Apple Developer Account to https://developer.apple.com and create a new "iOS Development

Certificate" from Certificates menu.
Create a new Identifier for your iOS apps and a new provisioning profile.

http://docwiki.embarcadero.com/RADStudio/Sydney/en/IOS_Mobile Application_Development
Configure Bundle Identifier

Open the menu Project / Options / Application / Version Info and set your Bundle Identifier

Version Info

Target
Release configuration - 105 Device 64-bit platform e Apply... Save...

Include version information in project

Module version number

Major version Minor version Build
[S [Sl .

Build number options

Do not change build number W
Key Yalue ~
CFBundleMame S{ModuleMame)
CFBundleDevelopmentRegion en
CFBundleDisplayMame S{ModuleMame)
CFBundleldentifier com.esegece.5(ModuleMame)
CFBundlelnfoDictionaryVersion 6.0
CFBundleVersion 1.0.0
CFBundlePackageType APPL
CFBundleSignature nn
L5RequiresIPhoneQ5s true
Deployment

If your project requires some static libraries, copy these libraries in the Embarcadero lib/iosDevice64 folder:

+ C:\Program Files (x86)\Embarcadero\Studio\<IDE Version>\lib\iosDevice64\debug
» C:\Program Files (x86)\Embarcadero\Studio\<IDE Version>\lib\iosDevice64\release

Read more about How Configure openSSL iOS
Provisioning

Finally, check in the menu Project / Options / Deployment, if the certificate has been successfully loaded.

http://docwiki.embarcadero.com/RADStudio/Sydney/en/PAServer%2c_the_Platform_Assistant_Server_Application
http://docwiki.embarcadero.com/RADStudio/Sydney/en/IOS_Mobile_Application_Development

QUICKSTART

Provisioning

Target
Release configuration - 105 Device 84-bit platform A Apply.. Save...

=Use envircnment options (Auto)> R

Developer Certificate:

<Auto> - To select a certificate, first select a valid provision profile

Provision Profile
Mame:
provisioning esegece
File Path:
[Users/sergic/Library/MobileDevice/Provisioning Profiles/
Application [dentifier:

Developer program Mame:
Sergic Gomez

Developer Certificate
iPhone Developer: Sergic Gomez

Current Bundle |dentifier:

com.esegecesgcClientMobile

QUICKSTART

Fast Performance Servers

Servers based on Indy Library

TsgcWebSocketServer and TsgcWebSocketHTTPServer are based on Indy library, so every connection is handled
by a thread, so if you have 1000 concurrent connections, you will have, at least, 1000 threads to handle these con-
nections. When performance is important, you must do some "tweaks" to increase performance and improve server
work. From sgcWebSockets 4.3.3 Indy servers support IOCP too, you can read more.

Use the following tips to increase server performance.

1. Set in Server component property NotifyEvents := neNoSync. This means that events are raised in the context
of connection thread, so there is no synchronization mechanism. If you must access to VCL controls or shared ob-
jects, use your own synchronization mechanisms.

2. Set in Server component property Optimizations.Connections.Enabled := True. If you plan to have more than
1000 concurrent connections in your server, and you call Server.WriteData method a lot, enable this property. Basi-
cally, it saves connections in a cache list where searches are faster than accessing to Indy connections list.

2.1 CacheSize: is the number of connections stored in a fast cache. Default value = 100.
2.2 GroupLevel: creates internally several lists split by the first character, so if you have lots of connections,
searches are faster. Default value = 1.

3. Set in Server component property Optimizations.Channels.Enabled := True. Enabling this property, channels
are saved in a list where searches are faster than previous method.

4. Set in Server component property Optimizations.ConnectionsFree.Enabled := True. If this property is en-
abled, every time there is a disconnection, instead of destroying TsgcWSConnection, the object is stored in a List
and every X seconds, all objects stored in this list are destroyed.

4.1 Interval: number of seconds where all disconnected connections stored in a list are destroyed. By default
is 60.

5. By default, sgcWebSockets uses Critical Sections to protect access to shared objects. But you can use TMoni-
tor or SpinLocks instead of critical sections. Just compile your project with one of the following compiler defines

3.1 {$DEFINE SGC_SPINLOCKS}
3.2 {$DEFINE SGC_TMONITOR}

6. Use latest FastMM4, you can download from: https://github.com/pleriche/FastMM4
FastMM4 is a very good memory manager, but sometimes doesn't scale well with multi-threaded applications.
Use the following compiler define in your application:

{$DEFINE UseReleaseStack}

Then, add FastMM4 as the first unit in your project uses and compile again. For a high concurrent server, you will
note an increase in performance.

This tweak does the following: If a block cannot be released immediately during a FreeMem call the block will be
added to a list of blocks that will be freed later, either in the background cleanup thread or during the next call to
FreeMem.

7. Better than FastMM4, use the latest FastMM5, you can download from: https://github.com/pleriche/FastMM5

This is a new version from the same developer of FastMM4, support from Delphi XE3 Compiler and can used on
Windows32 and Windows64.

FastMM5 is dual licensed, so there are 2 licenses: GPL and Commercial. So if you want use in commercial
projects, you must purchase a license

Find below a grid which compares the performance between FastMM4 and FastMM5, doing 100.000 websocket
requests and responses using 1, 10, 100, 500 and 1000 concurrent clients. The performance under FastMM5 is
much better, in multithreaded applications, than using FastMM4.

https://github.com/pleriche/FastMM4
https://github.com/pleriche/FastMM5

QUICKSTART

Clients V- rvva Fvvs Differ-

dows ence
1 Win32 4135 4214 1,91%
Win64 4052 4520 11,55%
10 Win32 4214 1729 -58,97%
Win64 4104 1875 -54,31%
100 Win32 3958 1604 -59,47%
Win64 3958 1614 -59,22%
500 Win32 4098 1723 -57,96%
Win64 5333 1791 -66,42%
1000 Win32 5927 2208 -62,75%
Win64 8166 2229 -72,70%

Indy Server Windows

sgcWebSockets Enterprise Edition supports IOCP on Windows, this means that instead of creating 1 thread for
every connection a pool of threads handle all the connections. To enable IOCP, just set the IOHandler to IOCP.

IOHandlerOptions.IOHandlerType = iohlIOCP
The property IOHandlerOptions.IOCP allows you to customize the IOCP properties.

+ IOCPThreads: these are the threads used to handle the connections, by default the value is zero which
means the threads will be calculated automatically using the number of processors (for Delphi 7 to Delphi
2007 this value is set to 32 because the CPU count function is not supported).

+ WorkOpThreads: set a value greater than zero if you want that the requests for every connection are han-
dled always by the same thread. By default, IOCP requests are handled by random threads, if you want that
the connections are handled by always the same thread, set a value greater than zero. Example: if you set
WorkOpThreads = 32, the server will create 32 threads and every time there is a new request, if the connec-
tion was already processed previously it will be queued in the same thread.

IOCP is recommended when you want to handle thousands of concurrent connections.

Indy Server Linux

sgcWebSockets Enterprise Edition support EPOLL on Linux, this means that instead of creating 1 thread for every
connection a pool of threads handle all the connections. To enable EPOLL, just set the IOHandler to EPOLL.

IOHandlerOptions.IOHandlerType = iohEPOLL
The property IOHandlerOptions.EPOLL allows to customize the EPOLL properties.

+ EPOLLThreads: these are the threads used to handle the connections, by default the value is zero which
means the threads will be calculated automatically using the number of processors.

+ WorkOpThreads: set a value greater than zero if you want that the requests for every connection are han-
dled always by the same thread. By default, EPOLL requests are handled by random threads, if you want
that the connections are handled by always the same thread, set a value greater than zero. Example: if you
set WorkOpThreads = 32, the server will create 32 threads and every time there is a new request, if the con-
nection was already processed previously it will be queued in the same thread.

EPOLL is recommended when you want to handle thousands of concurrent connections.

QUICKSTART

Server Based on HTTP.SYS

TsgcWebSocketServer_ HTTPAPI component is based on Microsoft HTTP API and it's designed to work with IOCP,
so it's recommended when the server must handle thousands of connections but it has the limitation that can only
run on Windows.

The server can handle WebSocket and HTTP/2 protocols on the same port and can work with other implementa-
tions because it can be configured to only handle some endpoints.

Example: you can configure this server to handle websocket connections with our sgcWebSockets library and let
other implementations / third-parties or whatever use other endpoints.

» Endpoint: https://server/ws will handle connections that use WebSocket protocol using sgcWebSockets
* Endpoint: https://server/other willl handle connection using other library.

Use latest FastMM5, you can download from: https://github.com/pleriche/FastMM$5

This is a new version from the same developer of FastMM4, support from Delphi XE3 Compiler and can used on
Windows32 and Windows64.

FastMM5 is dual licensed, so there are 2 licenses: GPL and Commercial. So if you want use in commercial
projects, you must purchase a license

Find below a grid which compares the performance between FastMM4 and FastMM5, doing 100.000 websocket
requests and responses using 1, 10, 100, 500 and 1000 concurrent clients. The performance under FastMM5 is
much better, in multithreaded applications, than using FastMM4.

Clients V- rvva Fvmvs Differ-

dows ence
1 Win32 5364 5182 -3,39%
Win64 5057 5026 -0,61%
10 Win32 4922 1744 -64,57%
Win64 4958 1770 -64,30%
100 Win32 3359 1682 -49,93%
Win64 3979 1536 -61,40%
500 Win32 2364 1890 -20,05%
Win64 2001 1666 -42,57%
1000 Win32 32906 1968 -40,29%

Win64 4469 1989 -55,49%

https://github.com/pleriche/FastMM5

QUICKSTART

Memory Manager

Recently a new version of FastMM, developed by Pierre le Riche, has been released, the new version is
called FastMM5 and has been rewritten to improve the performance on multi threaded applications, can be config-
ured for better speed or less memory usage and more.

Support from Delphi XE3 Compiler and can used on Windows32 and Windows64.

FastMM5 is dual licensed, so there are 2 licenses: GPL and Commercial. So if you want use in commercial
projects, you must purchase a license. More details here

https://github.com/pleriche/FastMM5

FastMM4 has a new fork, called FastMM4-AVX, developed by Maxim Masiutin, which adds very interesting fea-
tures like: more efficient synchronization, AVX instructions for faster memory copy, speed improvements and more.
FastMM4-AVX is dual licensed: MPL and GPL. More details here:

https://github.com/maximmasiutin/FastMM4-AVX

Configuration

In order to test the performance with our components, a new windows console application has been created, sgcBenchmark
which will be used to measure the performance of every memory manager using our sgcWebSockets components.

The test is very simple, a client (or more than one client) connects to a server, sends a message to server and
server replies with the same message to client. This is repeated 100.000 times. The tests are repeated changing
the number of concurrent clients, first 1, then 10, 100... the measured time is the time elapsed between the first
message sent by client and the last message received from server (so the time used to connect to server is not
measured).

The benchmark will compare the performance using the Default Memory Manager that comes with Delphi 10.4.1,
FastMM5 and FastMM4-AVX

Benchmark Indy WebSocket Server

In the first Benchmark, the Server used is the Indy WebSocket Server, this server is based on Indy TCP Server, so
every connection creates 1 thread.

The values are measured in milliseconds, so for example, the first test that is done with 1 client in Windows32 plat-
forms, using the default memory manager takes 4135 milliseconds, using FastMM5 takes 4214 milliseconds and
using FastMM4-AVX takes 4823 milliseconds. The percentage calculated is against the reference value, in this
case against the Default memory manager that comes with delphi, as much lower is the percentage, better perfor-
mance has.

The Benchmark has been done 3 times and the values showed are the sum of the benchmarks / 3.
For the benchmark, the server used was:

» Windows 2016 Server Datacenter
* 16 Virtual Processors

+ 32 GB RAM

« 22 GHz

The Delphi version used was Delphi 10.4.1, and the latest FastMM5 and FastMM4-AVX versions from github
servers.

Find below the result of the benchmark.

https://github.com/pleriche/FastMM5
https://github.com/maximmasiutin/FastMM4-AVX
http://www.esegece.com/help/sgcWebSockets/#t=Components%2FTsgcWebSocketServer.htm

QUICKSTART

Clients Plat- Default FMM5 FMM5 FMM4-AVX FMM4-AVX

form (ms) (ms) (%) (ms) (%)

1 Win32 4135 4214 1.91% 4823 16.64%
1 Win64 4052 4520 11.55% 4328 6.81%
10 Win32 4214 1729 -58.97% 1828 -56.62%
10 Win64 4104 1875 -54.31% 1651 -59.77%
100 Win32 3958 1604 -59.47% 1583 -60.01%
100 Win64 3958 1614 -59.22% 1635 -58.69%
500 Win32 4098 1723 -57.96% 1854 -54.76%
500 Win64 5333 1791 -66.42% 1833 -65.63%
1000 Win32 5927 2208 -62.75% 2328 -60.72%
1000 Win64 8166 2229 -72.70% 2234 -12.64%

Benchmark HTTP.SYS Server

In the second Benchmark, the Server used is the HTTP.SYS WebSocket Server, this server is based on HTTP API
Microsoft Framework and the connections are handled by a pool of threads.

The values are measured in milliseconds, so for example, the first test that is done with 1 client in Windows32 plat-
forms, using the default memory manager takes 5364 milliseconds, using FastMM5 takes 5182 milliseconds and
using FastMM4-AVX takes 5838 milliseconds. The percentage calculated is against the reference value, in this
case against the Default memory manager that comes with Delphi, as much lower is the percentage, better perfor-
mance has.

The Benchmark has been done 3 times and the values showed are the sum of the benchmarks / 3.
For the benchmark, the server used was:

» Windows 2016 Server Datacenter
* 16 Virtual Processors

+ 32 GB RAM

« 22 GHz

The Delphi version used was Delphi 10.4.1, and the latest FastMM5 and FastMM4-AVX versions from github
servers.

Find below the result of the benchmark.

Clients Plat- Default FMM5 FMM5 FMM4-AVX FMM4-AVX
form (ms) (ms) (%) (ms) (%)

1 Win32 5304 5182 -3.39% 5838 8.84%

http://www.esegece.com/help/sgcWebSockets/#t=Components%2FTsgcWebSocketServer_HTTPAPI.htm

QUICKSTART

10

10

100

100

500

500

1000

1000

Winb4

Win32

Win64

Win32

Win64

Win32

Win64

Win32

Win64

5507

4922

4958

3359

3979

2364

2907

3296

4469

5206

1744

1770

1682

15636

1890

1666

1968

1989

Comments about Benchmarks

-0.61%

-64.57%

-64.30%

-49.93%

-61.40%

-20.05%

-42.57%

-40.29%

-55.49%

5135

2088

1953

2244

1859

2344

1859

2531

2047

1.54%

-57.58%

-60.61%

-33.19%

-53.28%

-0.85%

-35.92%

-23.21%

-54.20%

Find below some comments about the results obtained after benchmark the 3 different memory managers:

+ Using in single threaded application, there are no big differences in performance between FastMM4, Fast-
MMS5 and FasMM4-AVX.

+ FastMM5 and FastMM4-AVX work much better in multithreaded applications.

» The differences between FastMM5 and FastMM4-AVX are small, at least doing these benchmarks.
* Windows 32 benchmarks performs better than Windows 64 tests. Using FastMM5 or FastMM4-AVX in a
Windows 64 applications improves performance more than in Windows 32.

The final decision to choose one memory manager or another depends of the project, | think there is no single
memory manager that works as the best in all conditions, so before choose one or another, test, test and test again
to see which performance better for your needs

QUICKSTART

OpenSSL

OpenSSL is a software library for applications that secure communications over computer networks against eaves-
dropping or need to identify the party at the other end. It is widely used by Internet servers, including the majority of
HTTPS websites.

This library is required by components based on Indy Library when a secure connection is needed. If your applica-
tion requires OpenSSL, you must have necessary files in your file system before deploying your application:

Currently, sgcWebSockets supports: 1.0.2, 1.1 and 3.0 to 3.3 openSSL versions.

Linking

Windows (32- gt:]((ajayBZ.dll libcrypto-1_1.dlland libcrypto-3.dll and Dynamic
bit and 64-bit) ssleay32.dll libssl-1_1.dll libssl-3.dlI

libcrypto.dylib, = libcrypto.1.1.dylib, libcrypto.3.dylib, .
OSX libssl.dylib libssl.1.1.dylib libss!.3.dylib Dynamic
iOS Device : -
(32-bit and Ilbcrypto.a I!b Eyate A e libcrypto.a and libssl.a Static

X and libssl.a libssl.a

64-bit)
. . libcrypto.dylib, libcrypto.1.1.dylib, libcrypto.3.dylib, .
I0S Simulator cdidviib- libssl.1.1.dylib libss!.3.dylib Dynamic
Android De- libcrypto.so, . . . : .
em libssl.so libcrypto.so, libssl.so libcrypto.so, libssl.so Dynamic

Find below how configure openSSL libraries for every Personality:

Windows
OSX
Android
i0S

openSSL Configurations

sgcWebSockets Indy based components allows to configure some openSSL properties. Access to the following
properties:

» Server Components: SSLOptions.OpenSSL_Options.
» Client Components: TLSOptions.OpenSSL_Options.

API Version

Standard Indy library only allow to load 1.0.2 openSSL libraries, these libraries have been deprecated and latest
openSSL releases use 1.1.1 API.

sgcWebSockets Enterprise allows to load 1.1.1 openSSL libraries, you can configure in this property which
openSSL API version will be loaded. Only one API version can be loaded by process (so you can't mix openSSL
1.0.2 and 1.1.1 libraries in the same application).

LibPath

This property allows to set the location of openSSL libraries. This is useful for Android or OSX projects, where the
location of the openSSL libraries must be set.

http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#32-bit_and_64-bit_Windows
http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#iOS_Simulator.2C_OS_X_and_Android
http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#32-bit_and_64-bit_iOS_Device
http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#iOS_Simulator.2C_OS_X_and_Android
http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#iOS_Simulator.2C_OS_X_and_Android

QUICKSTART

Accepts the following values:
+ oslpNone: this value doesn't set any library path value (is the value by default).

+ oslpDefaultFolder: this value sets the default folder of openSSL libraries. This path is different for every
personality (windows, o0sxX...).

Self-Signed Certificates

You can use self-signed certificates for testing purposes, you only need to execute the following command to create
a self-signed certificate

openssl req -newkey rsa:2048 -new -nodes -x509 -days 3650 -keyout key.pem -out cert.pem

It will create 2 files: cert.pem (certificate) and key.pem (private key). You can combine both files in a single one.
Just create a new file and copy the content of both files on the new file. So you will have an structure like this:

Common Errors

SSL_GET_RECORD: wrong version humber

This error means that the server and the client are using a different version of SSL/TLS protocol, to fix it, try to set
the correct version in Server and/or client component

Server.SSLOptions.Version
Client.TLSOptions.Version

SSL3_GET_RECORD: decryption failed or bad record mac

Usually these error is raised when:

1. Check that you are using the latest OpenSSL version, if is too old, update to latest supported.

2. If this error appears randomly, usually is because more than one thread is accessing to the OpenSSL connec-
tion. You can try to set NotifyEvents = neNoSync which means that the events: OnConnect, OnDisconnect, OnMes-
sage... will be fired in the context of thread connection, this avoids some synchronization problems and provides
better performance. As a down side, if for example you are updating a visual control in a form when you receive a
message, you must implement your own synchronization methods because visual controls are not thread-safe.

QUICKSTART

OpenSSL | Windows

There is one version for 32 bits and another for 64 bits. You must copy these libraries in the same folder where is
your application or in your system path.

If your Operating System is Windows 32 bits, just copy in System32 folder.

If your Operating System is Windows 64 bits, copy 64 bits version in System32 folder and 32 bits version in Sys-
Wow64 folder.

API 1.0

Requires the following libraries:

* libeay32.dll
+ ssleay32.dll

If your Operating System is Windows 32 bits, just copy in System32 folder.
If your Operating System is Windows 64 bits, copy 64 bits version in System32 folder and 32 bits version in Sys-
Wow64 folder.

You can download latest libraries from your account (libraries don't have external dependencies and are digitally
signed).

API 1.1

Requires the following libraries:
Windows 32

* libcrypto-1_1.dll
* libssl-1_1.dll

Windows 64

* libcrypto-1_1-x64.dll
* libssl-1_1-x64.dll

If your Operating System is Windows 32 bits, just copy in System32 folder.
If your Operating System is Windows 64 bits, copy 64 bits version in System32 folder and 32 bits version in Sys-
Wow64 folder.

You can download latest libraries from your account (libraries don't have external dependencies and are digitally
signed).

API 3.*

Requires the following libraries:
Windows 32

* libcrypto-3.dll
* libssl-3.dll

Windows 64

* libcrypto-3-x64.dll
* libssl-3-x64.dll

QUICKSTART

If your Operating System is Windows 32 bits, just copy in System32 folder.
If your Operating System is Windows 64 bits, copy 64 bits version in System32 folder and 32 bits version in Sys-
Wow64 folder.

You can download latest libraries from your account (libraries don't have external dependencies and are digitally
signed).

If you're using a p12 certificate, requires to deploy the legacy.dll library. Read more about OpenSSL p12 Certifi-
cates.

QUICKSTART

OpenSSL | OSX

Newer versions of OSX doesn't include openssl libraries or are too old, so you must deploy with your application.
Deploy these libraries using following steps:

Open Project/Deployment in your project.

Add required libraries.

Set RemotePath ='Contents\Macos\".

Configure the openSSL LibPath to default folder:
* Client. TLSOptions.OpenSSL_Options.LibPath = oslpDefaultFolder.
» Server.SSLOptions.OpenSSL_Options.LibPath = oslpDefaultFolder.

AP11.0

Requires the following libraries:

* libcrypto.dylib
+ libssl.dylib

You can download latest libraries from your account.

API 1.1

Requires the following libraries:

* libcrypto.1.1.dylib
* libssl.1.1.dylib

There is one version for 32 bits and another for 64 bits. You must copy these libraries in the same folder where is

your application.
You can download latest libraries from your account.

API 3.0

Requires the following libraries:

* libcrypto.3.dylib
* libssl.3.dylib

Only 64bits version are provided. You must copy these libraries in the same folder where is your application
You can download latest libraries from your account.

If you include the openSSL libraries in a OSX application, after the application has been Notarized, the libraries will
be signed, you can check this using the following command:

codesign -dv --verbose=4 libcrypto.1.1.dylib

Check the following video which shows how Build a MacOSX64 Application with openSSL libraries

https://www.esegece.com/websockets/videos/delphi/quickstart/275-build-macosx64-application/file

https://www.esegece.com/websockets/videos/delphi/quickstart/275-build-macosx64-application/file

QUICKSTART

Errors

Clients should not load the unversioned libcrypto dylib as it does not have a stable ABI.

On MacOS Monterey+, you can get this error trying to load the openSSL libraries, the error happens when tries to
load first the openSSL libraries without version (libcrypto.dylib for example).

To fix this error set in the property OpenSSL_Options.UnixSymLinks the value oslsSymLinksDontLoad. This
avoids the loading of the openSSL libraries without version.

QUICKSTART

OpenSSL | Android

Newer versions of Android doesn't include openssl libraries or are too old, so you must deploy with your applica-
tion. Deploy these libraries using following steps:

Open Project/Deployment in your project.

Add required libraries.

Set RemotePath ='\assets\internal'.

Configure the openSSL LibPath to default folder:
* Client. TLSOptions.OpenSSL_Options.LibPath = oslpDefaultFolder.
» Server.SSLOptions.OpenSSL_Options.LibPath = oslpDefaultFolder.

AP11.0

Requires the following libraries:

* libcrypto.so
* libssl.so

You can download latest libraries from your account.
On Android 64bits, using TLS 1.2 may raise the following error:
INT_RSA_VERIFY:bad signature

This is a openSSL error that it's fixed on APl 1.1.
You can try to use TLS 1.0 or TLS 1.1 (if the server still supports these encryption methods to avoid this error).

API 1.1

Requires the following libraries:

* libcrypto.so
* libssl.so

You can download latest libraries from your account.

API1 3.0

Requires the following libraries:

* libcrypto.so
* libssl.so

You can download latest libraries from your account.

QUICKSTART

OpenSSL | i0OS

To install OpenSSL in a 64-bit iOS device, you must copy the libcrypto.a and libssl.a SSL library files to your sys-
tem. Download the .zip iOS OpenSSL, extract it and find the .a files in the \lib directory. You must copy the
libcrypto.a and libssl.a SSL library files to these directories:

» C:\Program Files (x86)\Embarcadero\Studio\<IDE Version>\lib\iosDevice64\debug
» C:\Program Files (x86)\Embarcadero\Studio\<IDE Version>\lib\iosDevice64\release

Add sgcldSSLOpenSSLHeaders_static (or IdSSLOpenSSLHeaders if your sgcWebSockets edition is not Enter-
prise) unit to your uses clause.

If you need to deploy any file, you can set RemotePath = StartUp\Documents and to load the file use (requires add
System.IOUtils to uses clause):

TPath.GetDocumentsPath + PathDelim + <your filename>

The openSSL libraries must not be deployed using the menu Project/Deployment under iOS.

API 1.1

Modify IdCompilerDefines.inc and enable SGC_OPENSSL_API_1_1 in IOS section:

{SIFDEF IOS}
{SDEFINE HAS getifaddrs}
{SDEFINE USE OPENSSL}
{SIFDEF CPUARM}
// RLebeau: For 10S devices, OpenSSL cannot be used as an external library,
// it must be statically linked into the app. For the i1i0S simulator, this
// 1s not true. Users who want to use OpenSSL in i0S device apps will need
// to add the static OpenSSL library to the project and then include the
// I1dSSLOpenSSLHeaders static unit in their uses clause. It hooks up the
// statically linked functions for the IdSSLOpenSSLHeaders unit to use...
{SDEFINE STATICLOAD OPENSSL}
// sgc--> enable for openssl API 1.1
{$DEFINE SGC OPENSSL API 1 1}
{SENDIF}
{SENDIF}

You can download libraries from your account.

API1 3.0

Modify IdCompilerDefines.inc and enable SGC_OPENSSL_API_1 1 and SGC_OPENSSL_API_3 0 in IOS sec-
tion:

{SIFDEF IOS}

{SDEFINE HAS getifaddrs}

{SDEFINE USE OPENSSL}

{$IFDEF CPUARM}
// RLebeau: For i10S devices, OpenSSL cannot be used as an external library,
// it must be statically linked into the app. For the i0S simulator, this
// 1s not true. Users who want to use OpenSSL in i0S device apps will need
// to add the static OpenSSL library to the project and then include the
// IdSSLOpenSSLHeaders static unit in their uses clause. It hooks up the
// statically linked functions for the IdSSLOpenSSLHeaders unit to use...
{SDEFINE STATICLOAD OPENSSL}

QUICKSTART

// sgc--> enable for openssl API 1.1
{$DEFINE SGC_OPENSSL API 1 1}
// sgc—-> enable for openssl API 3.0
{$DEFINE SGC_OPENSSL API 3 0}
{SENDIF}

{SENDIF}

You can download libraries from your account.

QUICKSTART

OpenSSL | Own CA Certificates

Github post

To create a certificate signed by your own CA and that can be trusted by Web Browsers (like Chrome) after adding
CA certificate to local machine.

1. Prepare the configuration files for creating certificates without prompts

CA.cnf

[req]

prompt = no

distinguished_name = req_distinguished_name
[req_distinguished_name]

C = Us

ST = Localzone

L = localhost

0 = Certificate Authority Local Center

OU = Develop

CN = develop.localhost.localdomain
emailAddress = root@localhost.localdomain

localhost.cnf

[req]

default_bits = 2048

distinguished_name = req_distinguished_name
reg_extensions = reqg_ext

x509_extensions = v3_req

prompt = no

[req_distinguished_name]

countryName = US

stateOrProvinceName = Localzone
localityName = Localhost

organizationName = Certificate signed by my CA
commonName = localhost.localdomain
[req_ext]

subjectAltName = @alt_names

[v3_req]

subjectAltName = @alt_names

[alt_names]

IP.1 = 127.0.0.1

IP.2 = 127.0.0.2

IP.3 = 127.0.0.3

IP.4 = 192.168.0.1

IP.5 = 192.168.0.2

IP.6 = 192.168.0.3

DNS.1 = localhost

DNS.2 = localhost.localdomain
DNS.3 = dev.local

2. Generate a CA private key and Certificate (valid for 5 years)

openssl req -nodes -new -x509 -keyout CA_key.pem -out CA_cert.pem -days 1825 -config CA.cnf

3. Generate web server secret key and CSR

openssl req -sha256 -nodes -newkey rsa:2048 -keyout localhost_key.pem -out localhost.csr -config localhost.cnf

4. Create certificate and sign it by own certificate authority (valid 1 year)

https://stackoverflow.com/questions/66558788/how-to-create-a-self-signed-or-signed-by-own-ca-ssl-certificate-for-ip-address

QUICKSTART

openssl x509 -req -days 398 -in localhost.csr -CA CA_cert.pem -CAkey CA_key.pem -CAcreateserial -out localhost_ce

5. Output files will be:

» cA.cnf — OpenSSL CA config file. May be deleted after certificate creation process.

» cA_cert.pem — [Certificate Authority] certificate. This certificate must be added to the browser local authority
storage to make trust all certificates that created with using this CA.

* cA_cert.srl — Random serial number. May be deleted after certificate creation process.

* cA_key.pem — Must be used when creating new [localhost] certificate. May be deleted after certificate cre-
ation process (if you do not plan reuse it and CA_cert.pem).

* localhost.cnf — OpenSSL SSL certificate config file. May be deleted after certificate creation process.

* localhost.csr — Certificate Signing Request. May be deleted after certificate creation process.

* localhost_cert.pem — SSL certificate. Must be configured in SSLOptions.CertFile property of the serv-
er.

* localhost_key.pem — Secret key. Must be installed at SSLOptions.KeyFile proeprty of the server.

QUICKSTART

OpenSSL | P12 Certificates

OpenSSL 3.0 moved several deprecated or insecure algorithms into an internal library module called legacy
provider. It is not loaded by default, so apps (or their language runtimes) that use OpenSSL for cryptographic oper-
ations cannot use such algorithms when loading certificates, creating message digests ...

Algorithms in the legacy provider include MD2, MD4, MDC2, RMD160, CAST5, BF (Blowfish), IDEA, SEED, RC2,
RC4, RC5 and DES (but not 3DES).

For security reasons, it is strongly recommended to retire the use of these legacy algorithms.

If your application utilizes client certificates stored in a file encrypted with a legacy cipher such as RC2-40-CBC, it is
possible to "modernize" the certificate file by re-encrypting it using the openssl program.

For example, if you have a client.p12 (or client.pfx) certificate file on your local computer:

$ openssl pkcsl2 -legacy -in client.pl2 -nodes -out cert-decrypted.tmp
(enter passphrases if prompted)

S openssl pkcsl2 -in cert-decrypted.tmp -export -out client-new.pl2
(enter passphrases if prompted)

$ rm cert-decrypted.tmp
The exported client-new.p12 certificate file now contains the same keys, but encrypted using AES-256-CBC.

Check below the configuration for sgcWebSockets and sgcindy packages:

sgcWebSockets

» Set the property OpenSSL_Options.Legacy.Enabled to True.
+ Set the location of the Legacy library.
- OpenSSL_Options.Legacy.LibPath: here you can configure where is located the legacy library
= oslpNone: this is the default, the legacy library should be in the same folder where is the bina-
ry or in a known path.
= oslpDefaultFolder: sets automatically the legacy library path where the libraries should be lo-
cated for all IDE personalities.
= oslpCustomFolder: if this is the option selected, define the full path in the property LibPath-
Custom.
- OpenSSL_Options.Legacy.LibPathCustom: when LibPath = oslpCustomFolder define here the
full path where are located the legacy library.

sgcindy

+ Set the property SSLOptions.Legacy to True.
» Before start the server or client, set the path where the legacy.dll library it's located. Use the
function IdOpenSSLSetOSSLPath and pass the path as argument.

QUICKSTART

OpenSSL | Verify Certificate

When using OpenSSL and setting the option Verify Certificate, the following error may appear:

Error connecting with SSL.error:80000002:system library::No such file or directory.

If you handle the event OnVerifyPeer and the parameter Error has a value of 20, the error means:

X509 V_ERR UNABLE TO GET ISSUER CERT LOCALLY

The main reason for this error is one or more certificates presented by the remote server are not present in the cer-
tificate store of your application. To resolve this, you can use the property RootCertFile and set the path where the

CAfile is located. If you don't have any, you can download from mozilla for example:

https://curl.haxx.se/docs/caextract.html

After setting the RootCertFile, the previous error should be gone.

https://curl.haxx.se/docs/caextract.html

QUICKSTART

Indy

Indy library is an open source client/server communications library that supports TCP/UDP/RAW sockets, as well
as over 100 higher level protocols including SMTP, POP3, IMAP, NNTP, HTTP, FTP, and many more. Indy is written
in Delphi but is also available for C++Builder and FreePascal. sgcWebSockets uses Indy as a base for some com-
ponents and the different sgcWebSockets Editions make a different use of the Indy library.

sgcWebSockets supports protocols like HTTP/2 which require the use of ALPN, can use TLS 1.3 using openSSL
1.1.1 or openSSL 3.0.0... all these features are not supported by standard Indy library, so sgcWebSockets Enter-
prise edition includes a custom Indy library which supports this features. To avoid uninstall the standard Indy library
from the IDE, the required Indy files are renamed adding the prefix "sgc", so for example: the unit "IdGlobal" is re-
named to "sgcldGlobal". This way, both versions can coexist without problems.

Find below which Indy version is used by every sgcWebSockets Edition:

sgcWebSockets Edition Indy Version

STANDARD Standard
PROFESSIONAL Standard
ENTERPRISE Custom

Customers with a "Registered" licenses, are old licenses before the sgcWebSockets package was splitted, will find
the following sgcWebSockets package versions:

sgcWebSockets Edition Indy Version

sgcWebSockets Standard
sgcWebSockets min Standard
sgcWebSockets min Indy* Custom

*The sgcWebSockets_min_indy is the same that sgcWebSockets Enterprise edition.

The use of the custom indy version, is defined in the file "sgcVer.inc" located in the source folder. There is a compil-
er define called "SGC_CUSTOM_INDY" which enables or disables the use of this indy version. If you have a Enter-
prise Edition and want to disable the use of the custom indy, just delete the following compiler define:

{SDEFINE SGC CUSTOM INDY}

Of course, if you enable SGC_CUSTOM_INDY but you don't have in the source folder the required custom indy
version units, this compiler define won't work.

sgcindy package

The use of the custom indy version is not limited to the sgcWebSockets components. Some customers want to
make use of the new features of this custom indy version, in standard Indy components like SMTP for example, so
they use TLS 1.3 when sending emails, using FTP servers... The sgcWebSockets Enterprise edition, provides an
additional full Indy package with all these features. This package, called "sgcindy package", includes the full Indy li-
brary with support for openSSL 1.1.1 and openSSL 3.0.0. So you first must uninstall your current Indy library in-
stalled in your IDE and then install this version, the process to install the sgcindy package it's exactly the same that
any Indy library (here the units are not renamed).

When you want to use openSSL libraries, just set the global variable OPENSSL_API_VERSION to the desired
opensSSL API Version before loading openSSL libraries. This global variable is in the unit IISSLOpenSSLHeaders.

Example: to use the openSSL 1.1.1 libraries

OPENSSL_API VERSION := opSSL 1 1;

QUICKSTART

How to use a Single sgcindy package

When using sgcWebSockets Enterprise and sgcindy package in a same application, the sources maybe duplicated
because the sgcWebSockets Enterprise version uses a custom indy version with the Indy units renamed, this
means that for example units like sgcldGlobal.pas and IdGlobal.pas will be compiled in the same application (the
first is used when using any component of the sgcWebSockets Enterprise package and the second when using any
component of the sgcindy package, like ftp, smtp...).

To avoid this behaviour, the sgcWebSockets package can be configured to use the sgcindy installed version and
still make use of all the components. To do this, follow the instructions below:

1. Open the file sgcVer.inc, it's located in the folder Source of the sgcWebsockes package.

2. Disable the compiler directive: SGC_CUSTOM_INDY. This option tells the compiler, the files that start with
sgcld*.pas exist and must be used when compiling the sgcWebSockets Enterprise Package.

3. Enable the following compiler: SGC_INDY_LIB. This options tells the compiler, the sgcindy package is installed
and must be used when compiling the package

{SDEFINE SGC INDY LIB}

Using the previous configuration, the sgcWebSockets Enterprise package will use the sgcindy package that is in-
stalled and all the features that make use of this package (like http/2, IOCP, openSSL 3.0...) will be enabled.

TOPICS

WebSocket Events

WebSocket connections have the following events:

OnConnect
The event raised when a new connection is established.

OnDisconnect
The event raised when a connection is closed.

OnError
The event raised when a connection has any error.

OnMessage
The event raised when a new text message is received.

OnBinary
The event raised when a new binary message is received.

By default, sgcWebSockets uses an asynchronous mechanism to raise these events, when any of these events is
raised internally, it queues this message and is dispatched by the operating system when is allowed. This behav-
iour can be modified using a property called NotifyEvents, by default neAsynchronous is selected, if neNoSync
is checked then events will be raised without synchronizing with the main thread (if you need to update any VCL
control or access to shared resources, then you will need to implement your own synchronizing method).

neNoSync is recommended when:
1. You need to handle a lot of messages on a very short period of time.

2. Your project is built for command line (if you don't set neNoSync, you won't get any event).
3. Your project is a library.

If no, then you can set default property to neAsynchronous.

TOPICS

WebSocket Parameters Connection

Supported by

TsgcWebSocketClient
Java script

Sometimes is useful to pass parameters from client to server when a new WebSocket the connection is estab-
lished. If you need to pass some parameters to the server, you can use the following property:

Options / Parameters

By default, is set to '/, if you need to pass a parameter like id=1, you can set this property to '/?id=1'

On Server Side, you can handle client parameters using the following parameter:

procedure WSServerConnect(Connection: TsgcWSConnection);
begin
if Connection.URL = '/?id=1" then
HandleThisParameter;
end;

Using Javascript, you can pass parameters using connection url, example:

<script src="http://localhost/sgcWebSockets.js" type="text/javascript"></script>
<script type="text/javascript">var socket = new sgcWebSocket('ws://localhost/?id=1");</script>

TOPICS

Using inside a DLL

If you need to work with Dynamic Link Libraries (DLL) and sgcWebSockets (or console applications), NotifyEvents
property needs to be set to neNoSync.

TOPICS

WebBrowser Test

TsgcWebSocketServer implements a built-in Web page where you can test WebSocket Server connection with your
favourite Web Browser.

To access to this Test Page, you need to type this URL:
http://host:port/sgcWebSockets.html
Example: if you have configured your WebSocket Server on IP 127.0.0.1 and uses port 80, then you need to type:
http://127.0.0.1:80/sgcWebSockets.html
In this page, you can test the following WebSocket methods:
Open
Close

Status
Send

To disable WebBrowser HTML Test pages, just set in TsgcWebSocketServer.Options.HTMLFiles = false;

TOPICS

Custom Sub-Protocols

A client can request that the server use a specific subprotocol by including the subprotocol name in its handshake.
If it is specified, the server needs to include one of the selected subprotocol values in its response for the connec-
tion to be established.

In order to create your own subprotocol, you must inherit from TsgcWSProtocol Client Base and
TsgcWSProtocol_Server_Base in order to create your custom subprotocols.

//Client Example Code
unit sgcWebSocket_Protocol Example_Client;
interface

{$I sgcVer.inc}
{$IFDEF SGC_PROTOCOLS}

uses
sgcWebSocket_Protocol_Base_Client, Classes, sgcWebSocket_Classes;

type
TsgcWSProtocol_Example_Client = class(TsgcWSProtocol _Client_Base)
{ from TsgcwWSComponent }
protected
procedure DoEventConnect(aConnection: TsgcWSConnection); override;
procedure DoEventMessage(aConnection: TsgcwWSConnection; const Text: string);
override;
procedure DoEventDisconnect(aConnection: TsgcWSConnection; Code: Integer);
override;
{ from TsgcWSComponent }
public
constructor Create(aOwner: TComponent); override;
end;
{$ENDIF}

implementation
{$IFDEF SGC_PROTOCOLS}

constructor TsgcWSProtocol Example_Client.Create(aOwner: TComponent);

begin
inherited;
// ... here add your protocol name
FProtocol := 'MyProtocol';

end;

procedure TsgcWSProtocol Example_Client.DoEventConnect(aConnection:
TsgcWSConnection);
begin
inherited;
// ... add your own code when client connects to server
end;

procedure TsgcWSProtocol Example_Client.DoEventDisconnect(aConnection:
TsgcwWSConnection; Code: Integer);

begin
// ... add your own code when client disconnects from server
inherited;

end;

procedure TsgcWSProtocol Example_Client.DoEventMessage(aConnection:
TsgcwSConnection; const Text: string);

begin

// ... process messages received from server

// ... you can send a message to server using WriteData('your message') method
end;

{$ENDIF}

TOPICS

end.

// Server Example Code

unit sgcWebSocket_Protocol Example_Server;
interface

{$I sgcVer.inc}
{$IFDEF SGC_PROTOCOLS}

uses
sgcWebSocket_Protocol_Base_Server, Classes, sgcWebSocket_Classes;

type
TsgcWSProtocol_Example_Server = class(TsgcWSProtocol_Server_Base)
{ from TsgcWSComponent }
protected
procedure DoEventConnect(aConnection: TsgcWSConnection); override;
procedure DoEventMessage(aConnection: TsgcWSConnection; const Text: string);
override;
procedure DoEventDisconnect(aConnection: TsgcWSConnection; Code: Integer);
override;
{ from TsgcwWSComponent }
public
constructor Create(aOwner: TComponent); override;
end;
{$ENDIF}

implementation

{$IFDEF SGC_PROTOCOLS}
constructor TsgcWSProtocol Example_Server.Create(aOwner: TComponent);

begin
inherited;
// ... here add your protocol name
FProtocol := 'MyProtocol';

end;

procedure TsgcWSProtocol Example_Server .DoEventConnect(aConnection:
TsgcwWSConnection);

begin

inherited;

// ... add your own code when a client connects to server
end;

procedure TsgcWSProtocol Example_Server.DoEventDisconnect(aConnection:
TsgcWSConnection; Code: Integer);

begin
// ... add your own code when a client disconnects from server
inherited;

end;

procedure TsgcWSProtocol Example_Server .DoEventMessage(aConnection:
TsgcwWSConnection; const Text: string);

begin
inherited;
// ... process messages received from clients
// ... you can answer to client using WriteData(aConnection.Guid, 'your message') method
// ... you can send a message to all clients using BroadCast('your message') method
end;
{$ENDIF}
end.
//Implementation

// Once your custom subprotocol is implemented, then you only need to assign to your Client or Server webso

procedure InitalizeClient;
var
oClient: TsgcWebSocketClient;
oProtocol: TsgcWSProtocol Example_Client;

begin
oClient := TsgcWebSocketClient.Create(nil);
oProtocol := TsgcWSProtocol Example_Client.Create(nil);
oProtocol.Client := oClient;

end;

procedure InitalizeServer;
var
oServer: TsgcWebSocketServer;
oProtocol: TsgcWSProtocol Example_Server;
begin
oClient := TsgcWebSocketServer.Create(nil);
oProtocol := TsgcWSProtocol Example_Server.Create(nil);

TOPICS

oProtocol.Server := oServer;
end;

TOPICS

Authentication

Supported by
TsgcWebSocketServer

TsgcWebSocketHTTPServer
TsgcWebSocketClient

Java script (*only URL Authentication is supported)
WebSockets Specification doesn't have any authentication method and Web Browsers implementation don't allow
to send custom headers on new WebSocket connections.
To enable this feature you need to access to the following property:

Authentication/ Enabled

sgcWebSockets implements 3 different types of WebSocket authentication:
Session: client needs to do an HTTP GET passing username and password, and if authenticated, server re-
sponse a Session ID. With this Session ID, client open WebSocket connection passing as a parameter. You
can use a normal HTTP request to get a session id using and passing user and password as parameters
http://host:port/sgc/req/auth/session/:user/:password
example: (user=admin, password=1234) --> http://localhost/sgc/req/auth/session/admin/1234

This returns a token that is used to connect to server using WebSocket connections:

ws://localhost/sgc/auth/session/:token

URL.: client open WebSocket connection passing username and password as a parameter.

ws://host:port/sgc/auth/url/username/password

example: (user=admin, password=1234) --> http://localhost/sgc/auth/url/admin/1234

Basic: implements Basic Access Authentication, only applies to VCL Websockets (Server and Client) and
HTTP Requests (client Web Browsers don't implement this type of authentication). When a client tries to
connect, it sends a header using AUTH BASIC specification.

You can define a list of Authenticated users, using Authentication/ AuthUsers property. You need to define every
item following this schema: user=password. Example:

admin=admin
user=1234

There is an event called OnAuthentication where you can handle authentication if the user is not in AuthUsers list,
client doesn't send an authorization request... You can check User and Password params and if correct, then set
Authenticated variable to True. example:

procedure WSServerAuthentication(Connection: TsgcWSConnection; aUser, aPassword: string; var Authenticated: Boole
begin
if (aUser = 'John') and (aPassword = '1234') then

TOPICS

Authenticated := True;
end;

TOPICS

Secure Connections

Supported by

TsgcWebSocketServer

TsgcWebSocketHTTPServer

TsgcWebSocketClient

Web Browsers
SSL support is based on Indy implementation, so you need to deploy openssl libraries in order to use this feature.
TsgcWebSocketClient supports Microsoft SChannel, so there is no need to deploy openssl libraries for windows 32
and 64 bits if SChannel option is selected in WebSocket Client.
Server Side
To enable this feature, you need to enable the following property:

SSL/ Enable

There are other properties that you need to define:

SSLOptions/ CertFile/ KeyFile/ RootCertFile: you need a certificate in .PEM format in order to encrypt
websocket communications.

SSLOptions/ Password: this is optional and only needed if the certificate has a password.

SSLOptions/ Port: port used on SSL connections.

Client Side
To enable this feature, you need to enable the following property:

TLS/ Enable

OpenSSL

By default, client and server components based on Indy make use of openSSL libraries when connect to secure
websocket servers.

Indy only supports 1.0.2 openssl APl so API 1.1 is not supported. If you compile sgcWebSockets with our custom
Indy library you can make use of APl 1.1 and select TLS 1.3 version. Just select in OpenSSL_Options properties
which openSSL API would you use:

» oslAPI_1_0: it's default indy API, you can use standard Indy package with openssl 1.0.2 libraries.
» oslAPI_1_1: only select if you are compiling sgcWebSockets with our custom Indy library (Enterprise Edi-
tion). Will use openssl 1.1.1 libraries.
» oslAPI_3_0: only select if you are compiling sgcWebSockets with our custom Indy library (Enterprise Edi-
tion). Will use openssl 3.0.0 libraries.
+ ECDHE: allows to enable ECDHE for TLS 1.2 (more secure connections).

Events

There are 2 events which can be used to customize your SSL settings:

TOPICS

OnSSLGetHandler

This event is raised before SSL handler is created, you can create here your own SSL Handler (needs to be inherit-
ed from TIdServerlOHandlerSSLBase or TIdIOHandlerSSLBase) and set the properties needed

procedure OnServerSSLGetHandler (Sender: TObject; aType: TwsSSLHandler; var aSSLHandler:
TIdServerIOHandlerSSLBase);
begin

aSSLHandler := TCustomSSLHandler.Create(nil);

end;

OnSSLAfterCreateHandler

If no custom SSL object has been created, it creates by default using OpenSSL handler. You can access to SSL
Handler properties and modify if needed

procedure OnSSLAfterCreateHandler(Sender: TObject; aType: TwsSSLHandler; aSSLHandler:
TIdServerIOHandlerSSLBase);
begin
TIdServerIOHandlerSSLOpenSSL(aSSLHandler).SSLOptions.Method := sslvTLSvl_2;
end;

Microsoft SChannel

From sgcWebSockets 4.2.6 you can use SChannel instead of openssl (only for windows from Windows 7+). This
means there is no need to deploy openssl libraries. TLS 1.0 is supported from windows 7 but if you need more
modern implementations like TLS 1.2 in Windows 7 you must enable TLS 1.1 and TLS 1.2 in Windows Registry.
Requires Delphi 2010 Professional Edition (or Enterprise Edition for Delphi 7, 2007 and 2009).

TOPICS

HeartBeat

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketServer_ HTTPAPI
TsgcWebSocketClient

On Server components, automatically sends a ping to all active WebSocket connections every x seconds.
On Client components, automatically sends a ping to the server every x seconds.
HeartBeat has the following properties:

+ Enabled: if true, sends a ping
* Interval: is the value in seconds when a ping will be sent. Example: if value is 10, a ping will be sent every
10 seconds
» Timeout: is the time will wait a response from server. Example: if value is 30, means will wait 30 seconds to
receive a response before close connection.
+ HeartBeatType: allows to customize how the HeartBeat works
o hbtAlways: sends a ping every x seconds defined in the Interval.
> hbtOnlylfNoMsgRcvinterval: sends a ping every x seconds only if no messages has been received
during the latest x seconds defined in the Interval property.

Customize HeartBeat

Client and server components allow customize HeartBeat to send custom pings and control that connection is still
alive. The event OnBeforeHeatBeat is built exactly for that, allows to send a custom message and/or not send stan-
dard ping.

Example: send a message text as a ping every 30 seconds.

procedure OnBeforeHeartBeat(Sender: TObject; const Connection: TsgcWSConnection; var Handled: Boolean);
begin

Connection.WriteData('ping');

Handled := True;
end;

104

TOPICS

WatchDog

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketServer_ HTTPAPI
TsgcWebSocketClient

Server

On Server components, automatically restart server after unexpected shutdown. To check if server is active every
60 seconds, just set the following properties:

WatchDog.Enabled = true;
WatchDog.Interval = 60;
WatchDog.Attempts = 0;

WatchDog.Monitor allows to verify if new clients can connect to server, this is done by an internal client that tries to
open a WebSocket connection to server, if fails, it restart the server. To monitor if clients can connect to server with
a Time Out of 10 seconds, set the following properties:

WatchDog.Enabled = true;
WatchDog.Interval = 60;
WatchDog.Attempts 0;
WatchDog.Monitor.Enabled true;
WatchDog.Monitor.TimeOut = 10;

Client

On Client components, automatically reconnect to server after unexpected disconnection. To reconnect after a dis-
connection every 10 seconds, just set the following properties:

WatchDog.Enabled = true;
WatchDog.Interval = 10;
WatchDog.Attempts = 0;

TOPICS

Logs

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient

This is a useful feature that allows debugging WebSocket connections, to enable this, you need to access to the
following property:

LogFile/ Enabled

Once enabled, every time a new connection is established it will be logged in a text file. On Server component, if
the file it's not created it will be created but with you can't access until the server is closed, if you want to open log
file while the server is active, log file needs to be created before start server.

Example:

127.0.0.1:49854 Stat Connected.

127.0.0.1:49854 Recv 09/11/2013 11:17:03: GET / HTTP/1.1
Upgrade: websocket

Connection: Upgrade

Host: 127.0.0.1:5414

Origin: http://127.0.0.1:5414

Pragma: no-cache

Cache-Control: no-cache

Sec-WebSocket-Key: 1n5981dHs9SdRfxUK8u4Vw==
Sec-WebSocket-Version: 13

Sec-WebSocket-Extensions: x-webkit-deflate-frame

127.0.0.1:49854 Sent 09/11/2013 11:17:03: HTTP/1.1 101 Switching Protocols
Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: gDuzFRzwHBc18P1CfinlvKviBJc=

7.0.0.1:49854 Stat Disconnected.
.0.0.0:0 Stat Disconnected.

WebSocket Messages

WebSocket frames can be masked, which means that the message logged can not be read.
When the property LogFile.UnMaskFrames = True (by default it's true)

» Messages sent by WebSocket Client are saved as unmasked.
» Messages received by WebSocket Server are saved masked and unmasked (the reason is that when the
socket reads the buffer, it doesn't know if the protocol of the message, so it saves both).

TOPICS

HTTP

Supported by

TsgcWebSocketHTTPServer

TsgcWebSocketHTTPServer is a component that allows handling WebSocket and HTTP connections using the
SAME port. Is very useful when you need to set up a server where only HTTP port is enabled (usually 80 port). This
component supports all TsgcWeBSocketServer features and allows to serve HTML pages.

You can serve HTML pages statically, using DocumentRoot property, example: if you save test.html in directory
"C:\inetpub\wwwroot”, and you set DocumentRoot to "C:\inetpub\wwwroot". If a client tries to access to test.html, it
will be served automatically, example:

http://localhost/test.html

Or you can serve HTML or other resources dynamically by code, to do this, there is an event called OnCom-
mandGet that is fired every time a client requests a new HTML page, image, javascript file... Basically, you need to
check which document is requesting client (using ARequestinfo.Document) and send a response to client (using
AResponselnfo.ContentText where you send response content, AResponse.ContentType which is the type of re-
sponse and a AResponselnfo.ResponseNo with a number of response code, usually is 200), example:

procedure WSServerCommandGet (AContext: TIdContext; ARequestInfo: TIdHTTPRequestInfo;
AResponseInfo: TIdHTTPResponseInfo);

begin
if ARequestInfo.Document = '/myfile.js' then
begin
AResponseInfo.ContentText := '<script type="text/javascript">alert("Hello!");</script>";
AResponseInfo.ContentType := 'text/javascript';
AResponseInfo.ResponseNo := 200;
end
end;

107

TOPICS

Broadcast and Channels

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketServer HTTPAPI

Broadcast method by default send message to all clients connected, but you can use channels argument to fil-
ter and only broadcast message to clients subscribed to a channel.

Example: your server has 2 types of connected clients, desktop and mobile devices, so you can create 2 channels
"desktop" and "mobile".

If you can identify in OnConnect event of server if a client is mobile, you can do something like following.

procedure OnServerConnect(Connection: TsgcWSConnection);
begin
if desktop then
TsgcwSConnectionServer (Connection).DoSubscribe('desktop');
end;

First cast Connection to TsgcWSConnectionServer to access subscription methods and if fits your filter, will be sub-
scribed to desktop channel. Subscription to a channel can be done in any event, example, you can ask to client to
tell you if it's mobile or not and send a message from client to server with info about client. Then you can only
broadcast to desktop connections:

Server.Broadcast('Your text message', 'desktop');

If you have 100 connections and 30 are mobile, message will be only sent to other 70.

TOPICS

Bindings

Supported by
TsgcWebSocketServer
TsgcWebSocketHTTPServer
Usually, Servers have more than one IP, if you enable a WebSocket Server and set listening port to 80, when the

server starts, tries to listen port 80 of ALL IP, so if you have 3 IP, it will block port 80 of each IP's.

Bindings allow defining which exact IP and Port are used by the Server. Example, if you need to listen on port 80
for IP 127.0.0.1 (internal address) and 80.254.21.11 (public address), you can do this before the server is activated:

With wWSServer.Bindings.Add do

begin
Port := 80;
IP := '127.0.0.1"';
end;
wWith wSServer.Bindings.Add do
begin
Port := 80;
IP := '80.254.21.11"';

end;

TOPICS

Post Big Files

Supported by

TsgcWebSocketHTTPServer
TsgcWebSocketServer HTTPAPI

When a HTTP client sends a multipart/form-data stream, the stream is saved by server in memory. When the files
are big, the server can get an out of memory exception, to avoid these exceptions, the server has a property
called HTTPUploadFiles where you can configure how the POST streams are handled: in memory or as a file
streams. If the streams are handled as file streams, the streams received are stored directly in the hard disk so the
memory problems are avoided.

To configure your server to save multipart/form-data streams as file streams, follow the next steps:

1. Set the property HTTPUploadFiles.StreamType = pstFileStream. Using this setup, the server will store these
streams in the hard disk.

2. You can configure which is the minimum size in bytes where the files will be stored as file stream. By default
the value is zero, which means all streams will be stored as file stream.

3. The folder where the streams are stored using SaveDirectory, if not set, will be stored in the same folder where
the application is.

4. When a client sends a multipart/form-data, the content is encoded inside boundaries, if the property Remove-
Boundaries is enabled, the content of boundaries will be extracted automatically after the full stream is received.

Sample Code

First create a new server instance and set the Streams are saved as File Streams.

oServer := TsgcWebSocketHTTPServer.Create(nil);
oServer.Port := 5555;
oServer.HTTPUploadFiles.StreamType := pstFileStream;
oServer.Active := True;

Then create a new html file with the following configuration

<html>
<head><title>sgcWebSockets - Upload Big File</title></head>
<body>
<form action="http://127.0.0.1:5555/file"™ method="post" enctype="multipart/
form-data" accept-charset="UTF-8">
<input type="file" name="file 1" />
<input type="submit" />
</form>
</body>
</html>

Finally open the html file with a web browser and send a file to the server. The server will create a new file stream
with the extension ".sgc_ps" and when the stream is fully received, it will extract the file from the boundaries.

Events

There are 2 events which can be used to customize the upload file flow (requires the property
HTTPUploadFiles.RemoveBoundaries is enabled)

OnHTTPUploadBeforeSaveFile

This event is fired BEFORE the file is saved and allows to customize the name of the file received.

TOPICS

procedure OnHTTPUploadBeforeSaveFileEvent(Sender: TObject; var aFileName: string; var aFilePath: string);
begin
if aFileName = "test.jpg" then
aFileName := "custom_test.jpg";
end;

OnHTTPUploadAfterSaveFile

This event is fired AFTER the file is saved and allows to know the name of the file saved.

procedure OnHTTPUploadBeforeSaveFileEvent(Sender: TObject; const aFileName: string; const aFilePath: string);
begin
DoLog("File Received: " + aFileName);

end;

OnHTTPUploadReadInput

This event is fired when the decoder reads an input value received different from the file input (example: if the form
has some variables like name, date...).

procedure OnHTTPUploadReadInputEvent(Sender: TObject; const aName: string; const avalue: string);
begin
DoLog("Input value received: " + aName + ":" + aValue);

end;

TOPICS

Compression

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient

Web Browsers like Chrome

This is a feature that works very well when you need to send a lot of data, usually using a binary message, be-
cause it compresses WebSocket message using protocol "PerMessage Deflate" which is supported by some
browsers like Chrome.

To enable this feature, you need to activate the following property:

Extensions/ PerMessage_Deflate / Enabled
When a client tries to connect to a WebSocket Server and this property is enabled, it sends a header with this prop-
erty enabled, if Server has activated this feature, it sends a response to the client with this protocol activated and all
messages will be compressed, if Server doesn't have this feature, then all messages will be sent without compres-

sion.

On Web Browsers, you don't need to do anything, if this extension is supported it will be used automatically, if not,
then messages will be sent without compression.

If WebSocket messages are small, is better don't enable this property because it consumes cpu cycle to compress/
decompress messages, but if you are using a big amount of data, you will notify and increase on messages ex-
change speed.

TOPICS

Flash

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer

WebSockets are supported natively by a wide range of web browsers (please check http://caniuse.com/websockets),
but there are some old versions that don't implement WebSockets (like Internet Explorer 6, 7, 8 or 9). You can en-
able Flash Fallback for all these browsers that don't implement WebSockets.

Almost all other or older browser support Flash installing Adobe Flash Player. To Support Flash connection, you
need to open port 843 on your server because Flash uses this port for security reasons to check for cross-domain-
access. If port 843 is not reachable, waits 3 seconds and tries to connect to Server default port.

Flash is only applied if the Browser doesn't support WebSockets natively. So, if you enable Flash Fallback on the
server side, and Web Browser supports WebSockets natively, it will still use WebSockets as transport.

To enable Flash Fallback, you need to access to FallBack / Flash property on the server and enable it. There are
2 properties more:

1. Domain: if you need to restrict flash connections to a single/multiple domains (by default all domains are al-
lowed). Example: This will allow access to domain swf.example.com

swf.example.com
2. Ports: if you need to restrict flash connections to a single/multiple ports (by default all ports are allowed). Exam-
ple: This will allow access to ports 123, 456, 457, and 458

123,456-458

Flash connections only support Text messages, binary messages are not supported.

http://caniuse.com/websockets

TOPICS

Custom Objects

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketServer_ HTTPAPI
TsgcWebSocketClient

Every time a new WebSocket connection is established, sgcWebSockets creates a TsgcWSConnection class
where you can access to some properties like identifier, bytes received/sent, client IP... and there is a property
called Data where you can store objects in memory like database access, session objects...

//You can create a new class called MyClass and create some properties, example:
TMyClass = class
private
FRegistered: Boolean;
FUser: String;
public
property Registered: Boolean read FRegistered write FRegistered;
property User: String read FUser write FUser;
end;

// Then, when a new client connects, OnConnect Event, create a new TMyClass and Assign to Data:
procedure WSServerConnect(Connection: TsgcWSConnection);
begin
Connection.Data := TMyClass.Create;
end;

// Every time a new message is received by the server, you can access your custom object
// using Connection.Data property.
procedure WSServerMessage(Connection: TsgcWSConnection; const Text: string);
begin
if TMyClass(Connection.Data).Registered then
DoSomeStuff();
end;

// When a connection is closed, you may free your object:
procedure TfrmServerChat.WSServerDisconnect(Connection: TsgcWSConnection; Code: Integer);
var
oMyClass: TMyClass;
begin
oMyClass := TMyClass(Connection.Data);
if Assigned(oMyClass) then
begin
oMyClass.Free;
Connection.Data := nil;
end;
end;

114

TOPICS

Groups

Supported by

TsgcWebSocketServer

TsgcWebSocketHTTPServer

TsgcWebSocketServer HTTPAPI
sgcWebSockets provides a powerful method for broadcasting messages to specified subsets of connected
clients. A group can have any number of clients, and a client can be a member of any number of groups. You don't
have to explicitly create groups. In effect, a group is automatically created the first time you specify its name in a
call to Groups.Add.

When you add a user to a group using the Groups.Add method, the user receives messages directed to that group
for the duration of the current connection.

Adding and removing users

To add or remove users from a group, you call the Add or Remove methods, and pass the Group Name and the Ts-
gcWSConnection class. You do not need to manually remove a user from a group when the connection ends.

The following example shows the Groups.Add method.

procedure OnConnect(Connection: TsgcWSConnection);
begin

TsgcWebSocketServerl.Groups.Add('Rooml', Connection);
end;

Sending Messages to a Group

You can send a message to all members of a group as shown in the following example.

TsgcwWebSocketServerl.Groups.Group['Rooml'].Broadcast('Hello Members of Rooml');

Or you can send a message to all groups that start with "Room" (so if exists Room1, Room2, Room3... these users
will receive a message).

TsgcwWebSocketServerl.Groups.Broadcast('Room*', 'Hello Members of Room');

Events

There are 2 events that can be used to handle the Groups and Clients every time a new client is added to a group
or when is removed:

OnClientAdded
OnClientRemoved

Example, send a message to the group when a member leaves the group.

TOPICS

TsgcWebSocketServerl.Groups.OnClientRemoved := OnClientRemovedEvent;

procedure OnClientRemovedEvent(Sender: TObject; const aGroup: TsgcWSServerGroupItem;
const aConnection: TsgcWSConnection);

begin
aGroup.BroadCast('Client ' + aConnection.Guid + ' has disconnected');

end;

TOPICS

IOCP

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer

*Requires custom Indy version.

IOCP for Windows is an APl which allows handles thousands of connections using a limited pool of threads instead
of using a thread for connection like Indy by default does.
To enable IOCP for Indy Servers, Go to IOHandlerOptions property and select iohlOCP as IOHandler Type.

Server.IOHandlerOptions.IOHandlerType := 1ohIOCP;
Server.IOHandlerOptions.IOCP.IOCPThreads := 0;
Server.IOHandlerOptions.IOCP.WorkOpThreads := 0;

IOCPThreads are the threads used for IOCP asynchronous requests (overlapped operations), by default the value
is zero which means the number of threads are calculated using the number of processors (except for Delphi 7 and
2007 where the number of threads is set to 32 because the function cpucount is not supported).

WorkOpThreads only must be enabled if you want that connections are processed always in the same thread.
When using I0OCP, the requests are processed by a pool of threads, and every request (for the same connection)
can be processed in different threads. If you want to handle every connection in the same thread set in
WorkOpThreads the number of threads used to handle these requests. This impacts in the performance of the
server and it's only recommended to set a value greater of zero only if you require this feature.

Enabling IOCP for windows servers is recommended when you need handle thousands of connections, if your
server is only handling 100 concurrent connections at maximum you can stay with default Indy Thread model.

OnDisconnect event not fired

IOCP works differently from default indy IOHandler. With default indy IOHandler, every connection runs in a thread
and these thread are running all the time and checking if connection is active, so if there is a disconnection, it's noti-
fied in a short period of time.

IOCP works differently, there is a thread pool which handles all connections, instead of 1 thread = 1 connection like
indy does by default. For IOCP, the only way to detect if a connection is still alive is trying to write in socket, if there
is any error means that connection is closed. There are 2 options to detect disconnections:

1. If you use TsgcWebSocketClient, you can enable it in Options property, CleanDisconnect := True (by default
is disabled). If it's enabled, before the client disconnects it sends a message informing the server about disconnec-
tion, so the server will receive this message and the OnDisconnect event will be raised.

2. You can enable heartbeat on the server side, for example every 60 seconds, so it will try to send a ping to all
clients connected and if there is any client disconnected, OnDisconnect will be called.

117

TOPICS

EPOLL

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer

*Requires sgcWebSockets Enterprise Edition.

EPOLL for Linux is an APl which allows handles thousands of connections using a limited pool of threads instead of
using a thread for connection like Indy by default does.
To enable EPOLL for Indy Servers, Go to IOHandlerOptions property and select iohIEPOLL as IOHandler Type.

Server.IOHandlerOptions.IOHandlerType := iohEPOLL;
Server.IOHandlerOptions.EPOLL.EPOLLThreads := 0;
Server.IOHandlerOptions.EPOLL.WorkOpThreads := 0;

EPOLLThreads are the threads used for EPOLL asynchronous requests (overlapped operations), by default the
value is zero which means the number of threads are calculated using the number of processors (except for Delphi
7 and 2007 where the number of threads is set to 32 because the function cpucount is not supported). You can ad-
just the number of threads manually.

WorkOpThreads only must be enabled if you want that connections are processed always in the same thread.
When using EPOLL, the requests are processed by a pool of threads, and every request (for the same connection)
can be processed in different threads. If you want to handle every connection in the same thread set in
WorkOpThreads the number of threads used to handle these requests. This impacts in the performance of the
server and it's only recommended to set a value greater of zero only if you require this feature.

Enabling EPOLL for Linux servers is recommended when you need handle thousands of connections, if your server
is only handling 100 concurrent connections at maximum you can stay with default Indy Thread model.

OnDisconnect event not fired

EPOLL works differently from default indy IOHandler. With default indy IOHandler, every connection runs in a
thread and these thread are running all the time and checking if connection is active, so if there is a disconnection,
it's notified in a short period of time.

EPOLL works differently, there is a thread pool which handles all connections, instead of 1 thread = 1 connection

like indy does by default. For EPOLL, the only way to detect if a connection is still alive is trying to write in socket, if
there is any error means that connection is closed. There are 2 options to detect disconnections:

1. If you use TsgcWebSocketClient, you can enable it in Options property, CleanDisconnect := True (by default
is disabled). If it's enabled, before the client disconnects it sends a message informing the server about disconnec-
tion, so the server will receive this message and the OnDisconnect event will be raised.

2. You can enable heartbeat on the server side, for example every 60 seconds, so it will try to send a ping to all
clients connected and if there is any client disconnected, OnDisconnect will be called.

Linux Connections Limit

If you want to increase the number of concurrent open connections use the following command

ulimit -n 10000

The previous command sets the max number of open files descriptors to 10000

TOPICS

ALPN

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient

*Requires custom Indy version.

Application-Layer Protocol Negotiation (ALPN) is a Transport Layer Security (TLS) extension for application-layer
protocol negotiation. ALPN allows the application layer to negotiate which protocol should be performed over a se-
cure connection in a manner that avoids additional round trips and which is independent of the application-layer

protocols. It is needed by secure HTTP/2 connections, which improves the compresslion of web pages and reduces
their latency compared to HTTP/1 .x.

Client

You can configure in TLSOptions.ALPNProtocols, which protocols are supported by client. When client connects to
server, these protocols are sent on the initial TLS handshake 'Client Hello', and it lists the protocols that the client
supports, and server select which protocol will be used, if any.

You can get which protocol has been selected by server accessing to ALPNProtocol property of TsgcWSConnec-
tionClient.

Server

When there is a new TLS connection, OnSSLALPNSelect event is called, here you can access to a list of protocols which are supported by client
and server can select which of them is supported.

If there is no support for any protocol, aProtocol can be left empty.

// Client
procedure OnClientConnect(Connection: TsgcWSConnection);
var
VvProtocol: string;
begin
VvProtocol := TsgcWSConnectionClient(Connection).ALPNProtocol;
end;
// Server

procedure OnSSLALPNSelect(Sender: TObject; aProtocols: TStringlList; var aProtocol: string);
var
i: integer;
begin
for i := 0 to aProtocols.count - 1 do
begin
if aProtocols[i] = 'h2' then
begin
aProtocol := 'h2';
break;
end;
end;
end;

TOPICS

Forward HTTP Requests

Supported by

TsgcWebSocketHTTPServer
TsgcWebSocketServer HTTPAPI
TsgcWSHTTPWebBrokerBridgeServer
TsgcWSHTTP2WebBrokerBridgeServer
TsgcWSServer_HTTPAPI_WebBrokerBridge

You can configure the server to forward some HTTP requests to another server, this is very useful when you have
more than one server and only one server is listening on a public address.

Example: you can configure your server, to forward to another server all requests to /internal while all other re-
quests are handled by sgcWebSockets server.

Use the event OnBeforeForwardHTTP to check if the URL requested must be forwarded and if it is, then set the
URL to forward.

Example: if you want to forward all requests to the document "/internal" to the server "localhost:8080", do the fol-
lowing:

procedure OnBeforeForwardHTTP(Connection: TsgcWSConnection; ARequestInfo: TIdHTTPRequestInfo;
aForward: TsgcWSServerForwardHTTP);

begin
if ARequestInfo.Document = '/internal' then
begin
aForward.Enabled := True;
aForward.URL := 'http://localhost:8080';
end;
end;
Other Options

When you want forward an HTTP request, you have the additional options:

1. By default, the request if forwarded using the original document. Example: if you forward the request http://local-
host:8080/internal to the internal server http://localhost:5555, the forwarded URL will be http://localhost:5555/inter-
nal. But you can modify the Document, using the Document property of Forward object (by default will use the
same of the original request).

aForward.Document = "/NewInternal”

2. If you forward a secure HTTP connection (HTTPs), you can customize the SSL/TLS options, in TLSOptions
property of Forward object. Example: set the TLS version

aForward.TLSOptions.Version = tis1_2

3. The following properties can be used to customize the HTTP request:

* QueryParams: the parameters after the document example: 'id=1&user=2".

* Host: specifies the host and port number of the server to which the request is being sent. Example:
www.esegece.com:443

+ Origin: the origin (scheme, hostname, and port) that caused the request. Example: https://
www.esegece.com/document.

* LogFilename: the name of the filename where the request/response will be stored.

* NoCache: if the request must not use the web-browser cache, by default is enabled.

+ CustomHeaders: a List of custom headers to be added to the request. Example:
CustomHeaders.Add('X-ReverseProxy-Host: http://127.0.0.1:8888/test');

TOPICS

Quality Of Service

Supported by

TsgcWSPServer_sgc
TsgcWSPClient_sgc
TsgcWSPClient. MQTT
Java script

SGC Default Protocol and MQTT implements a QoS (Quality of Service) for message delivery, there are 3 different
types:

Level 0: "At most once", where messages are delivered according to the best efforts of the underlying TCP/
IP network. Message loss or duplication can occur. This level could be used, for example, with ambient sen-
sor data where it does not matter if an individual reading is lost as the next one will be published soon after.

Level 1: "At least once", where messages are assured to arrive but duplicates may occur.

Level 2: "Exactly once", where message are assured to arrive exactly once. This level could be used, for ex-
ample, with billing systems where duplicate or lost messages could lead to incorrect charges being applied.

Level 0

The message is delivered according to the best efforts of the underlying TCP/IP network. A response is not
expected and no retry semantics are defined in the protocol. The message arrives at the server either once
or not at all.

The table below shows the QoS level 0 protocol flow.

Client | Message and direction Server
PUBLISH . . .
QoS =0 __EJ_____S__> Action: Publish a message to subscribers
Level 1

The receipt of a message by the server is acknowledged by a ACKNOWLEDGEMENT message. If there is
an identified failure of either the communications link or the sending device or the acknowledgement mes-
sage is not received after a specified period of time, the sender resends the message. The message arrives
at the server at least once.

A message with QoS level 1 has a Message ID in the message.

The table below shows the QoS level 1 protocol flow.

Client Message and direction Server

Actions:
QoS =1 PUBLISH . Storg message
Message ID = x e Publish a message to sub-

Action: Store message scribers
e Delete message

Action: Discard message

TOPICS

If the client does not receive an ACKNOWLEDGMENT message (either within a time period defined in the
application, or if a failure is detected and the communications session is restarted), the client may resend the
PUBLISH message.

Level 2

Additional protocol flows above QoS level 1 ensure that duplicate messages are not delivered to the receiv-
ing application. This is the highest level of delivery, for use when duplicate messages are not acceptable.
There is an increase in network traffic, but it is usually acceptable because of the importance of the message
content.

A message with QoS level 2 has a Message ID in the message.

The table below shows the QoS level 2 protocol flow. There are two semantics available for how a PUBLISH
flow should be handled by the recipient.

Client Message and direction Server

QoS =2 PUBLISH .
Message I D=x | S Action: Store message
Action: Store message

<P_L_J:B_F_{E(_:__ Message ID = x

Actions:

Message ID = x PUBREL * Publish a message to

---------- > subscribers

¢ Delete message

Action: Discard message ACKN(:‘_’YI_'EI?E_E_MENT Message ID = x

If a failure is detected, or after a defined time period, the protocol flow is retried from the last unacknowl-
edged protocol message. The additional protocol flows to ensure that the message is delivered to sub-
scribers once only.

TOPICS

Queues

Supported by

TsgcWSPServer_sgc
TsgcWSPClient_sgc

Java script

SGC Default Protocol implements Queues to add persistence to published messages (it's only available for Pub-

lished messages)

Level 0: Messages are not queued on Server

Level 1: only last message is queued on Server, and is sent every time a client subscribes to a new channel

or connects to the server.

Level 2: All messages are queued on Server, and are sent every time a client subscribes to a new channel

or connects to the server.

Level 0

The message is not queued by Server

The table below shows the Queue level 0 protocol flow.

Client Message and direction Server
Queue =0 _liEJ_I?I_‘_I_S_I:L Action: Publish a message to subscribers
Level 1

A message with Queue level 1 is stored on the server and if there are other messages stored for this chan-
nel, are deleted.

The table below shows the Queue level 1 protocol flow.

Client Message and direction Server
Actions:

PUBLISH
Queue =1 o Deletes All messages of this channel

---------- >

e Store last message by Channel

Action: Process NOTIFY Action: Every time a new client subscribes to
message <---mmm-e-- this channel, the last message is sent.

This is useful where publishers send messages on a "report by exception" basis, where it might be some
time between messages. This allows new subscribers to instantly receive data with the retained, or Last Known

Good, value.

Level 2

TOPICS

All messages with Queue level 2 are stored on the server.

The table below shows the Queue level 2 protocol flow.

Client Message and direction Server
Queue = 2 _Iil_J_I?I_'_I_S_l:L Action: Store message
Action: Process NOTIFY Action: Every time a new client subscribes to
message S this channel, ALL Messages are sent.

124

TOPICS

Transactions

Supported by

TsgcWSPServer_sgc
TsgcWSPClient_sgc
Java script

sgcWebSockets SGC Protocol supports transactional messaging, when a client commits a transaction, all mes-
sages sent by the client are processed on the server side. There are 3 methods called by the client:

StartTransaction

Creates a New Transaction on the server side and all messages that are sent from the client to the server after
this method, are queued on Server side, until the client calls to Commit or Rollback

Client Message_and di- Server
rection
TARTTRANSAC- .
S SAC Action: Creates a new Queue to store all Mes-
Channel = X TION e
__________ S sages of the specified channel
Channel = X __P_Lf_B_L_Ifi Action: Message is stored on Server Side.
Actlpn: (;Ilent get ACKNOWLEDGE- Action: Server returns an Acknowledgement to
confirmation of MENT . .
the client because message is stored.

message sent <=mmmmmmme-

Commit

When a client calls to commit, all messages queued by the server are processed.

Client Message and direction Server
Channel = COMMIT Action: Process all messages queued by Transac-
X | mmmmmmmee- > tion
RollBack
When a client calls to RollBack, all messages queued by the server are deleted and not processed on the server
side.
Client Message and direction Server
ROLLBACK . .
Channel =X| S Action: Delete all messages queued by Transaction

TOPICS

TCP Connections

Supported by
TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient

By default, sgcWebSocket use WebSocket as protocol, but you can use plain TCP protocol in client and server
components.

Client Component
Disable WebSocket protocol.

Client.Specifications.RFC6455 := False;

Server Component
Handle event OnUnknownProtocol and set Transport as trpTCP and Accept the connection.

procedure OnUnknownProtocol(Connection: TsgcWSConnection; var Accept: Boolean);

begin
Connection.Transport := trpTCP;
Accept := True;

end;

Then when a client connects to the server, this connection will be defined as TCP and will use plain TCP protocol
instead of WebSockets. Plain TCP connections don't know if the message is text or binary, so all messages re-
ceived are handle OnBinary event.

End of Message
If messages are big, sometimes can be received fragmented. There is a method to try to find end of message set-
ting which bytes find. Example: STOMP protocol, all messages ends with byte 0 and 10

procedure OnWSClientConnect(Connection: TsgcWSConnection);

begin
Connection.TCPEndOfFrameScanBuffer := eofScanAllBytes;
Connection.AddTCPEndOfFrame(0Q);
Connection.AddTCPEndOfFrame(10);

end;

TOPICS

SubProtocol

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient
TsgcWebSocketServer HTTPAPI

WebSocket provides a simple subprotocol negotiation, basically adds a header with protocols name supported by
request, these protocols are received and if the receiver supports one of them, sends a response with subprotocol
supported.

sgcWebSockets supports several SubProtocols: MQTT, WAMP... and more. You can implement your own subpro-
tocols using a very easy method, just call RegisterProtocol and send SubProtocol Name as an argument.

Example: you need to connect to a server which implements subprotocol "Test 1.0"

Client := TsgcWebSocketClient.Create(nil);
Client.Host := 'server host';

Client.Port := server.port;
Client.RegisterProtocol('Test 1.0');
Client.Active := True;

To use more than 1 protocol in a single connection, you can use the Broker Protocol (Server and Client) com-
ponents to handle it. Just put a Broker between the Client/Server and the protocols. Example: User SGC and Files
protocols using a single connection.

// ... server

oServer := TsgcWebSocketServer.Create(nil);
oServerBroker := TsgcWSPServer_Broker.Create(nil);
oServerBroker.Server := oServer;

oServerSGC := TsgcWSPServer_sgc.Create(nil);
oServerSGC.Broker := oServerBroker;

oServerFiles := TsgcWSPServer_files.create(nil);
oServerFiles.Broker := oServerBroker;

// ... client

oClient := TsgcWebSocketClient.Create(nil);
oClientBroker := TsgcWSPClient_Broker.Create(nil);
oClientBroker.Client := oClient;

oClientSGC := TsgcWSPClient_sgc.Create(nil);
oClientSGC.Broker := oClientBroker;

oClientFiles := TsgcWSPClient_files.create(nil);
oClientFiles.Broker := oClientBroker;

When a broker protocol is attached between the Server/Client and the protocol, the events OnConnect and
OnDisconnect are fired in the Broker component (instead of the Server or Client components).

127

TOPICS

Throttle

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient

Bandwidth Throttling is supported by Server and Client components, if enabled, can limit the number of bits per
second sent/received by the socket. Indy uses a blocking method, so if a client is limiting its reading, unread data
will be inside the client socket and the server will be blocked from writing new data to the client. As much slower is
client reading data, much slower is server writing new data.

TOPICS

Server-sent Events (Push Notifications)

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
Java script

SSE are not part of WebSockets, defines an API for opening an HTTP connection for receiving push notifications
from a server.

SSEs are sent over traditional HTTP. That means they do not require a special protocol or server implementation to
get working. In addition, Server-Sent Events have a variety of features that WebSockets lack by design such as au-
tomatic reconnection, event IDs, and the ability to send arbitrary events.

Events

» Open: when a new SSE connection is opened.
» Message: when the client receives a new message.
» Error: when there any connection error like a disconnection.

JavaScript API

To subscribe to an event stream, create an EventSource object and pass it the URL of your stream:

var sse = new EventSource('sse.html');

sse.addEventListener('message', function(e)
{console.log(e.data);

}, false);

sse.addEventListener('open', function(e) {
// Connection was opened.

}, false);

sse.addEventListener('error', function(e) {
if (e.readyState == EventSource.CLOSED) {

// Connection was closed.

}
}, false);

When updates are pushed from the server, the onmessage handler fires and new data is available in its e.data
property. If the connection is closed, the browser will automatically reconnect to the source after ~3 seconds (this is
a default retry interval, you can change on the server side).

Fields

The following field names are defined by the specification:

event

The event's type. If this is specified, an event will be dispatched on the browser to the listener for the specified

event name; the web site would use addEventListener() to listen for named events. the onmessage handler is
called if no event name is specified for a message.

data

TOPICS

The data field for the message. When the EventSource receives multiple consecutive lines that begin with data:, it
will concatenate them, inserting a newline character between each one. Trailing newlines are removed.

id

The event ID to set the EventSource object's last event ID value to.

retry

The reconnection time to use when attempting to send the event. This must be an integer, specifying the reconnec-
tion time in milliseconds. If a non-integer value is specified, the field is ignored.

All other field names are ignored.

For multi-line strings use #10 as line feed.

Examples of use:

If you need to send a message to a client, just use WriteData method.

// If you need to send a message to a client, just use WriteData method.
Connection.WriteData('Notification from server');

// To send a message to all Clients, use Broadcast method.
Connection.Broadcast('Notification from server');

// To send a message to all Clients, use Broadcast method.
Connection.Broadcast('Notification from server');

// To send a message to all Clients using url 'sse.html', use Broadcast method and Channel parameter:
Connection.Broadcast('Notification from server', '/sse.html');

// You can send a unique id with an stream event by including a line starting with "id:":
Connection.WriteData('id: 1' + #10 + 'data: Notification from server');

// If you need to specify an event name:
Connection.WriteData('event: notifications' + #10 + 'data: Notification from server');

javascript code to listen "notifications" channel:

sse.addEventListener('notifications', function(e) {
console.log('notifications:' + e.data);
}, false);

TOPICS

LoadBalancing

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketlLoadBalancerServer

Load Balancing allows distributing work between several back-end servers, every time a new client requests a con-
nection, it connects to a load balancer server (which is connected to back-end servers) and returns a connection
string with information about the host, port... which is used by the client to connect to a server. If you have for ex-
ample 4 servers, with this method all servers will have, more or less, the same number of connections, and work-
load will be similar.

If a client wants to send a message to all clients of all servers, just use broadcast method, and this message will be
broadcast to all servers connected to Load Balancer Server.

To enable this feature:
1. Drop a TsgcWebSocketLoadBalancerServer component, set a listening port and set active to True.

2. Server and Client components, have a property called LoadBalancer, where you need to set host and port
of Load Balancer Server, and enabled True.

The Component allows to Load Balancing WebSocket and HTTP Protocols.

TOPICS

Files

Supported by

TsgcWSPServer_sgc
TsgcWSPClient_sgc

This protocol allows sending files from client to server and from server to client in an easy way. You can send from
really small files to big files using a low memory usage. You can set:

1. Packet size in bytes.

2. Use custom channels to send files to only subscribed clients.
3. The progress of file send and received.

4. Authorization of files received.

5. Acknowledgement of packets sent.

TOPICS

Proxy

Supported by
TsgcWebSocketClient

Client WebSocket components support WebSocket connections through HTTP proxies, to enable proxy connection
you need to activate the following properties:

Proxy / Enabled
Once set to True, you can set up:

Host: Proxy server address
Port: Proxy server port
UserName/Password: Authentication to connect to proxy, only if required.
ProxyType: the following proxies are supported:
« HTTP
» Socks4
» Socks4A
* Socksb5

You can configure SOCKS proxies accessing to SOCKS property and set Enable to True.

TOPICS

Fragmented Messages

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient
TsgcWebSocketServer HTTPAPI

By default, when a stream is sent using sgcWebSockets library, it sends all data in a single packet or buffers all
packets and when the latest packet is received, OnBinary message event is called.
This behaviour can be customized by Options.FragmentedMessages property, which accepts following values:

1. frgOnlyBuffer: this is the default value, means that packet messages will be buffered and only when all stream is
received, OnBinary message will be called.

2. frgOnlyFragmented: this means that OnFragmented event only will be called for every packet received.

3. frgAll: this means that OnFragmented event will be called for every packet received and when the full stream is
received.

OnFragmented event is useful when you must send big streams and receiver must show progress of the transfer.

Example: the client must send a stream of size 1.000.000 bytes to server and server wants show progress for
every 1000 bytes received

The client will send a stream using writedata method with a size for a packet of 1000

Client.WriteData(stream, 1000);

The server will set in Options.FragmentedMessages := frgAll and will handle OnFragmented event to receive
progress of streams

procedure OnFragmented(Connection: TsgcWSConnection; const Data: TMemoryStream; const OpCode: TOpcode; const Cor
begin
ShowProgress(Data.Size);
if not Continuation then
SaveStream(Data);
end;

134

COMPONENTS

TsgcWebSocketClient

TsgcWebSocketClient implements Client WebSocket Component and can connect to a WebSocket Server. Follow
the next steps to configure this component:

1. Drop a TsgcWebSocketClient component onto the form

2. Set Host and Port (default is 80) to connect to an available WebSocket Server. You can set URL property and
Host, Port, Parameters... will be updated from URL. Example: wss://127.0.0.1:8080/ws/ will result:

oClient := TsgcWebSocketClient.Create(nil);
oClient.Host := '127.0.0.1';

oClient.Port := 80;

oClient.TLS := True;
oClient.Options.Parameters := '/ws/';

3. You can select if you require TLS (secure connection) or not, by default is not Activated.
4. You can connect through an HTTP Proxy Server, you need to define proxy properties:
Host: hostname of the proxy server.
Port: port number of the proxy server.
Username: user to authenticate, blank if anonymous.
Password: password to authenticate, blank if anonymous.
5. If the server supports compression, you can enable compression to compress messages sent.
6. Set Specifications allowed, by default all specifications are allowed.
RFC6455: is standard and recommended WebSocket specification.
Hixie76: always is false
7. If you want, you can handle events
OnConnect: when a WebSocket connection is established, this event is fired
OnDisconnect: when a WebSocket connection is dropped, this event is fired
OnError: every time there is a WebSocket error (like mal-formed handshake), this event is fired
OnMessage: every time the server sends a text message, this event is fired

OnBinary: every time the server sends a binary message, this event is fired

OnFragmented: when receives a fragment from a message (only fired when Options.FragmentedMessages =
frgAll or frgOnlyFragmented).

OnHandhake: this event is fired when handshake is evaluated on the client side.
OnException: every time an exception occurs, this event is fired.

OnSSLVerifyPeer: if verify certificate is enabled, in this event you can verify if server certificate is valid and ac-
cept or not.

OnBeforeHeartBeat: if HeartBeat is enabled, allows to implement a custom HeartBeat setting Handled parame-
ter to True (this means, standard websocket ping won't be sent).

OnBeforeConnect: before the client tries to connect to server, this event is called.

COMPONENTS

OnBeforeWatchDog: if WatchDog is enabled, allows to implement a custom WatchDog setting Handled para-
meter to True (this means, won't try to connect to server). You can change the Server Connection properties too
before try to reconnect, example: connect to a fallback server if first fails.

8. Set property Active = true to start a new websocket connection

Most common uses

¢ Connection

e How Connect WebSocket Server
Open a Client Connection
Close a Client Connection
Keep Connection active
Dropped Disconnections
Connect TCP Server
WebSocket Redirections

e Secure Servers
e Connect Secure Server
¢ Certificates OpenSSL
¢ Certificates SChannel
¢ SChannel Get Connection Info

* Send Messages
* Send Text Message
* Send Binary Message

* Receive Messages
* Receive Text Messages
* Receive Binary Messages

Authentication
¢ Client Authentication

e Other
* Client Exceptions
¢ Client WebSocket HandShake

* Client Register Protocol
* Client Proxies

Methods

WriteData: sends a message to a WebSocket Server. Could be a String or MemoryStream. If "size" is set, the
packet will be split if the size of the message is greater of size.

Ping: sends a ping to a Server. If a time-out is specified, it waits for a response until a time-out is exceeded, if no
response, then closes the connection.

Start: uses a secondary thread to connect to the server, this prevents your application freezes while trying to
connect.

Stop: uses a secondary thread to disconnect from the server, this prevents your application freezes while trying
to disconnect.

Connect: try to connect to the server and wait till the connection is successful or there is an error.

Disconnect: try to disconnect from the server and wait till disconnection is successful or there is an error.

COMPONENTS

Properties

Authentication: if enabled, WebSocket connection will try to authenticate passing a username and password.
Implements 4 types of WebSocket Authentication / Authorization methods

* Session: client needs to do a HTTP GET passing username and password, and if authenticated,
server response a Session ID. With this Session ID, client open WebSocket connection passing as a
parameter.

* URL: client open WebSocket connection passing username and password as a parameter.

* Basic: uses basic authentication where user and password as sent as HTTP Header.

+ Token: sends a token as HTTP Header. Usually used for bearer tokens where token must be set in
AuthToken property.

o OAuth: if a OAuth2 component is attached, before client connects to server, it requests
a new Access Token to Authorization server. OAuth2 Component.

Host: IP or DNS name of the server.
Port: the listening port of the server.
BoundIP: (optional) only use this property if you want to set the LOCAL IP Address of the TsgcWebSocket-
Client.
BoundPort: (optional) only use this property if you want to set the LOCAL Port of the TsgcWebSocketClient.
HeartBeat: if enabled try to keeps alive WebSocket connection sending a ping every x seconds.
Interval: number of seconds between each ping.
Timeout: max number of seconds between a ping and pong.
HeartBeatType: allows to customize how the HeartBeat works
» hbtAlways: sends a ping every x seconds defined in the Interval.
+ hbtOnlylfNoMsgRcvinterval: sends a ping every x seconds only if no messages has been received
during the latest x seconds defined in the Interval property.
TCPKeepAlive: if enabled, uses keep-alive at TCP socket level, in Windows will enable
SIO_KEEPALIVE_VALS if supported and if not will use keepalive. By default is disabled. Read about Dropped Dis-

connections.

Time: if after X time socket doesn't sends anything, it will send a packet to keep-alive connection (value in
milliseconds).

Interval: after sends a keep-alive packet, if not received a response after interval, it will send another packet
(value in milliseconds).

ConnectTimeout: max time in milliseconds before a connection is ready.

LoadBalancer: it's a client which connects to Load Balancer Server to broadcast messages and get information
about servers.

Enabled: if enabled, it will connect to Load Balancer Server.
Host: Load Balancer Server Host.
Port: Load Balancer Server Port.

Servers: here you can set manual WebSocket Servers to connect (if you don't make use of Load Balancer
Server get server connection methods), example:

http://127.0.0.1:80
http://127.0.0.2:8888

Connected: returns true if the connection is active. Use this property carefully, because uses internal "connect-
ed" Indy method, and this method may lock the thread and/or increment the use of cpu. If you want to know if the
client is connected, just use the Active property, which is safer.

137

COMPONENTS

ReadTimeout: max time in milliseconds to read messages.

WriteTimeOut: max time in milliseconds sending data to other peer, 0 by default (only works under Windows
0S).

BoundPortMin: minimum local port used by client, by default zero (means there aren't limits).
BoundPortMax: max local port used by client, by default zero (means there aren't limits).
Port: Port used to connect to the host.

LogFile: if enabled save socket messages to a specified log file, useful for debugging. The access to log file is
not thread safe if it's accessed from several threads.

Enabled: if enabled every time a message is received and sent by socket it will be saved on a file.
FileName: full path to the filename.
UnMaskFrames: by default True, means that saves the websocket messages sent unmasked.
Raw: by default False, if enabled it will save the messages in hex format.

NotifyEvents: defines which mode to notify WebSocket events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro-
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

Options: allows customizing headers sent on the handshake.
FragmentedMessages: allows handling Fragmented Messages

frgOnlyBuffer: the message is buffered until all data is received, it raises OnBinary or OnMessage
event (option by default)

frgOnlyFragmented: every time a new fragment is received, it raises OnFragmented Event.

frgAll: every time a new fragment is received, it raises OnFragmented Event with All data received
from the first packet. When all data is received, it raises OnBinary or OnMessage event.

Parameters: define parameters used on GET.
Origin: customize connection origin.

RaiseDisconnectExceptions: enabled by default, raises an exception every time there is a disconnection
by protocol error.

ValidateUTFS8: if enabled, validates if the message contains UTF8 valid characters, by default is disabled.

CleanDisconnect: if enabled, every time client disconnects from server, first sends a message to inform
server connection will be closed.

QueueOptions: this property allows to queue the messages in an internal queue (instead of send directly) and
send the messages in the context of the connection thread, this prevents locks when several threads try to send a
message. For every message type: Text, Binary or Ping a queue can be configured, by default the value set is gqm-
None which means the messages are not queued. The other types, means different queue levels and the differ-
ence between them are just the order where are processed (first are processed gmLevel1, then gmLevel2 and fi-
nally gmLevel3).

Example: if Text and Binary messages have the property set to gmLevel2 and Ping to gmLevel1. The client will
process first the Ping messages (so the ping message is sent first than Text or Binary if they are queued at the
same time), and then process the Text and Binary messages in the same queue.

COMPONENTS

Extensions: you can enable compression on messages sent.
Protocol: if exists, shows the current protocol used

Proxy: here you can define if you want to connect through a Proxy Server, you can connect to the following
proxy servers:
pxyHTTP: HTTP Proxy Server.
pxySocks4: SOCKS4 Proxy Server.
pxySocks4A: SOCKS4A Proxy Server.
pxySocks5: SOCKS5 Proxy Server.

WatchDog: if enabled, when an unexpected disconnection is detected, tries to reconnect to the server automati-
cally.

Interval: seconds before reconnects.
Attempts: max number of reconnects, if zero, then unlimited.
Throttle: used to limit the number of bits per second sent/received.
TLS: enables a secure connection.
TLSOptions: if TLS enabled, here you can customize some TLS properties.

ALPNProtocols: list of the ALPN protocols which will be sent to server.
RootCertFile: path to root certificate file.
CertFile: path to certificate file.
KeyFile: path to certificate key file.
Password: if certificate is secured with a password, set here.
VerifyCertificate: if certificate must be verified, enable this property.
VerifyDepth: is an Integer property that represents the maximum number of links permitted when verifica-
tion is performed for the X.509 certificate.
Version: by default negotiates all possible TLS versions from newer to lower. A specific TLS version can be
selected.
tisUndefined: this is the default value, the client will try to negotiate all possible TLS versions (start-
ing from newest to oldest), till connects successfully.
tls1_0: implements TLS 1.0
tls1_1:implements TLS 1.1
tls1_2: implements TLS 1.2
tls1_3: implements TLS 1.3
IOHandler: select which library you will use to connection using TLS.
iohOpenSSL: uses OpenSSL library and is the default for Indy components. Requires to deploy
openssl libraries (can be download from the private account of registered customers).
iohSChannel: uses Secure Channel which is a security protocol implemented by Microsoft for Win-
dows, doesn't require to deploy openssl libraries. Only works in Windows 32/64 bits.
OpenSSL_Options: configuration of the openSSL libraries.
APIVersion: allows to define which OpenSSL API will be used.
oslAPI_1_0: uses API 1.0 OpenSSL, it's latest supported by Indy
oslAPI_1_1: uses APl 1.1 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses APl 3.0 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 3.0.0 libraries (with TLS 1.3 support).
LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath-
Custom.
LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en-
abled, except under OSX64):
oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).

COMPONENTS

oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.
MinVersion: set here the minimum version that will use the client to connect to a secure server. By
default, the value is tisUndefined which means the minimum version is the same which has been set
in the Version property. Example: if you want to set the Client to only connect using TLS 1.2 or TLS
1.3 set the following values.

SSLOptions.Version :=tls1_3;
SSLOptions.OpenSSL_Options.MinVersion := tils1_2;

SChannel_Options: allows to use a certificate from Windows Certificate Store.
CertHash: is the certificate Hash. You can find the certificate Hash running a dir command in power-
shell.
CipherList: here you can set which Ciphers will be used (separated by ""). Example:

CALG_AES_256:CALG_AES_128

CertStoreName: the store name where is stored the certificate. Select one of below:
scsnMY (the default)
scsnCA
scsnRoot
scsnTrust

CertStorePath: the store path where is stored the certificate. Select one of below:
scspStoreCurrentUser (the default)
scspStoreLocalMachine

COMPONENTS

TsgcWebSocketClient | Connect WebSocket
Server

URL Property

The most easy way to connect to a WebSocket server is use URL property and call Active = true.

Example: connect to www.esegece.com using secure connection.

oClient := TsgcWebSocketClient.Create(nil);
oClient.URL := 'wss://www.esegece.com:2053"';
oClient.Active := true;

Host, Port and Parameters

You can connect to a WebSocket server using Host and port properties.

Example: connect to www.esegece.com using secure connections

oClient := TsgcWebSocketClient.Create(nil);
oClient.Host := 'www.esegece.com';
oClient.Port := 2053;

oClient.TLS := true;

oClient.Active := true;

COMPONENTS

TsgcWebSocketClient | Client Open Connec-
tion

Once your client is configured to connect to server, there are 3 different options to call Open a new connection.

Active Property

The most easy way to open a new connection is Set Active property to true. This will try to connect to server using
component configuration.
If you set Active property to false, will close connection if active.
This method is executed in the same thread that caller. So if you call in the Main Thread, method will be executed
in Main Thread of application.
Open Connection
oClient := TsgcWebSocketClient.Create(nil);
ééiient.Active := true;
When you call Active = true, you can't still send any data to server because client maybe is still connecting, you

must first wait to OnConnect event is fired and then you can start to send messages to server.

Close Connection

oClient.Active := false;

When you call Active = false, you cannot be sure that connection is already closed just after this code, so you
must wait to OnDisconnect event is fired.

Start/Stop methods

When you call Start() or Stop() to connect/disconnect from server, is executed in a secondary thread, so it doesn't
blocks the thread where is called. Use this method if you want connect to a server and let your code below contin-
ue.

Open Connection

oClient := TsgcWebSocketClient.Create(nil);

oClient.Start();

When you call Start(), you can't still send any data to server because client maybe is still connecting, you must
first wait to OnConnect event is fired and then you can start to send messages to server.

Close Connection

oClient.Stop();

When you call Stop(), you cannot be sure that connection is already closed just after this code, so you must
wait to OnDisconnect event is fired.

COMPONENTS

Connect/Disconnect methods

When you call Connect() or Disconnect() to open/close connection from server, this is executed in the same thread
where is called, but it waits till process is finished. You must set a Timeout to set the maximum time to wait till
process is finished (by default 10 seconds)

Example: connect to server and wait till 5 seconds

oClient := TsgcWebSocketClient.Create(nil);

if oClient.Connect(5000) then
oClient.WriteData('Hello from client')
else
Error();

If after calling Connect() method, the result is successful, you can already send a message to server because con-
nection is alive.

Example: connect to server and wait till 10 seconds

if oClient.Disconnect(10000) then
ShowMessage('Disconnected')
else
ShowMessage('Not Disconnected');

If after calling Disconnect() event the result is successful, this means that connection is already closed.

OnBeforeConnect event can be used to customize the server connection properties before the client tries to con-
nect to it.

COMPONENTS

TsgcWebSocketClient | Client Close Con-
nection

Connection can be closed using Active property, Stop or Disconnect methods, read more from Client Open Con-
nection.

CleanDisconnect

When connection is closed, you can notify other peer that connection is closed sending a message about close
connection, to enable this feature, Set Options.CleanDisconnect property to true.

If this property is enabled, before connection is closed, a Close message will be sent to server to notify that client is
closing connection.

Disconnect

TsgcWSConnection has a method called Disconnect(), that allows to disconnect connection at socket level. If you
call this method, socket will be disconnected directly without waiting any response from server. You can send a
Close Code with this method.

Close

TsgcWSConnection has a method called Close(), which allows to send a message to server requesting to close
connection, if server receives this message, must close the connection and client will receive a notification that con-
nection is closed. You can send a Close Code with this method.

144

COMPONENTS

TsgcWebSocketClient |Client Keep Connec-
tion Open

Once your client has connected to server, sometimes connection can be closed due to poor signal, connection er-
rors... there are 2 properties which helps to keep connection active.

HeartBeat

HeartBeat property allows to send a Ping every X seconds to maintain connection alive. Some servers, close
TCP connections if there is no data exchanged between peers. HeartBeat solves this problem, sending a ping
every a specific interval. Usually this is enough to maintain a connection active, but you can set a TimeOut interval
if you want to close connection if a response from server is not received after X seconds.

Example: send a ping every 30 seconds

oClient := TsgcWebSocketClient.Create(nil);
oClient.HeartBeat.Interval := 30;
oClient.HeartBeat.Timeout := 0;
oClient.HeartBeat.Enabled := true;
oClient.Active := true;

There is an event called OnBeforeHeartBeat which allows to customize HeartBeat behaviour. By default, if Heart-
Beat is enabled, client will send a websocket ping every X seconds set by HeartBeat.Interval property.
OnBeforeHeartBeat has a parameter called Handled, by default is false, which means the flow is controlled by Ts-
gcWebSocketClient component. If you set the value to True, then ping won't be sent, and you can send your cus-
tom message using Connection class.

WatchDog

If WatchDog is enabled, when client detects a disconnection, WatchDog try to reconnect again every X seconds
until connection is active again.

Example: reconnect every 10 seconds after a disconnection with unlimited attempts.

oClient := TsgcWebSocketClient.Create(nil);
oClient.wWatchDog.Interval := 10;
oClient.watchDog.Attempts := 0;
oClient.wWatchDog.Enabled := true;
oClient.Active := true;

You can use OnBeforeWatchDog event to change the Server where the client will try to connect. Example: after 3
retries, if the client cannot connect to a server, will try to connect to a secondary server.
The Handled property, if set to True, means that the client won't try to reconnect.

COMPONENTS

TsgcWebSocketClient | Dropped Disconnec-
tions

Once the connection has been established, if no peer sends any data, then no packets are sent over the net. TCP
is an idle protocol, so it assumes that the connection is active.

Disconnection reasons

» Application closes: when a process is finished, usually sends a FIN packet which acknowledges the other
peer that connection has been closed. But if a process crashes there is no guarantee that this packet will be
sent to other peer.

» Device Closes: if devices closes, most probably there won't be any notification about this.

» Network cable unplugged: if network cable is unplugged it's the same that a router closes, there is no data
being transferred so connection is not closed.

* Loss signal from router: if application loses signal from router, connection will still be alive.

Detect Half-Open Disconnections

You can try to detect disconnections using the following methods

Second Connection

You can try to open a second connection and try to connect but this has some disadvantages, like you are consum-
ing more resources, create new threads... and if other peer has rebooted, second connection will work but first
won't.

Ping other peer

If you try to send a ping or whatever message with a half-open connection, you will see that you don't get any error.

Enable KeepAlive at TCP Socket level

A TCP keep-alive packet is simply an ACK with the sequence number set to one less than the current sequence
number for the connection. A host receiving one of these ACKs responds with an ACK for the current sequence
number. Keep-alives can be used to verify that the computer at the remote end of a connection is still available.
TCP keep-alives can be sent once every TCPKeepAlive.Time (defaults to 7,200,000 milliseconds or two hours) if
no other data or higher-level keep-alives have been carried over the TCP connection. If there is no response to a
keep-alive, it is repeated once every TCPKeepAlive.Interval seconds. KeepAlivelnterval defaults to 1000 millisec-
onds.

You can enable per-connection KeepAlive and allow that TCP protocol check if connection is active or not. This is
the preferred method if you want to detect dropped disconnections (for example: when you unplug a network ca-
ble).

oClient := TsgcWebSocketClient.Create(nil);
oClient.TCPKeepAlive.Enabled := True;
oClient.TCPKeepAlive.Time := 5000;
oClient.TCPKeepAlive.Interval := 1000;

COMPONENTS

TsgcWebSocketClient | Connect TCP Server

TsgcWebSocketClient can connect to WebSocket servers but can connect to plain TCP Servers too.

URL Property
The most easy way to connect to a WebSocket server is use URL property and call Active = true.

Example: connect to 127.0.0.1 port 5555

oClient := TsgcWebSocketClient.Create(nil);
oClient.URL := 'tcp://127.0.0.1:5555";
oClient.Active := true;

Host, Port and Parameters

You can connect to a TCP server using Host and port properties.

Example: connect to 127.0.0.1 port 5555

oClient := TsgcWebSocketClient.Create(nil);
oClient.Specifications.RFC6455 := false;

oClient.Host := '127.0.0.1"';
oClient.Port := 5555;
oClient.Active := true;

147

COMPONENTS

TsgcWebSocketClient | Connections
TIME_WAIT

When a client initiates a disconnection from server, there is an exchange between client and server to inform about
the state of disconnection. When the process is finished, the client socket connection states as TIME_WAIT during
a variable time. This is a normal behavior, in windows operating systems, this time defaults to about 4 minutes.

You can reduce or eliminate this behaviour, do with careful, using the following alternatives.
REGEDIT
You can reduce the TIME_WAIT value using the Windows Regedit

1. Open Regedit and access to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\TCPIP\Parameters registry subkeys.

2. Create a new REG_DWORD value named TcpTimedWaitDelay

3. Set the value in Seconds. Example: if you set a value of 5, means that TIME_WAIT will waits as max as 5 sec-
onds.

4. Save and restart the system.

LINGER

Another option to avoid TIME_WAIT state, is use the socket option SO_LINGER, if enabled, instead of closing the
connection gracefully, the client resets the connection so the TIME_WAIT state is avoided.

You can enable this option using LingerState property, by default has a value of -1. If you set a value of zero, the
connection will be reset when disconnecting from socket without Timeout.

This options is probably the less recommended and only use as a last option.

COMPONENTS

TsgcWebSocketClient | WebSocket Redirec-
tions

When the client connects to a WebSocket server, the server can return an HTTP Response Code 30x. If the Re-
sponse code it's a 301, means that the location has been moved permanently, and the new url is informed in the
Location HTTP Header.

The WebSocket client, handle redirections automatically, so if detects the Server Response contains a redirection,
it will disconnect the actual connection and try to connect with then new Location URL.

Example

1. Client first tries to connect to url ws://127.0.0.1:5000
2. Server returns a Response Code of 301 and contains a Header Location with the value ws://80.50.1.2:3000
3. Client reads the Response from server, detects that it's a redirection and reads the Location

1. First Disconnects the actual connection.

2. Update the URL property with the value of Location Header (ws://80.50.1.2:3000)

3. Connects to the new server.

COMPONENTS

TsgcWebSocketClient | Connect Secure
Server

TsgcWebSocketClient can connect to WebSocket servers using secure and none-secure connections.

You can configure a secure connection, using URL property or Host / Port properties, see Connect to WebSocket
Server.

TLSOptions

In TLSOptions property there are the properties to customize a secure connection. The most important property
is version, which specifies the version of TLS protocol. Usually setting TLS property to true and
TLSOptions.Version to tisUndefined is enough for the wide majority of WebSocket Servers.

TLSOptions.Version allows to set the TLS version used to connect to server or let the client negotiate the TLS ver-
sion from all available (this is the default when value is tisUndefined).

If you get an error trying to connect to a server about TLS protocol, most probably this server requires a TLS
version newer than you set.

If TLSOptions.IOHandler is set to iohOpenSSL, you need to deploy OpenSSL libraries (which are the libraries
that handle all TLS stuff), check the following article about OpenSSL.

If TLSOptions.IOHandler is set to iohSChannel, then there is no need to deploy any library (only windows is
supported).

COMPONENTS

TsgcWebSocketClient | Certificates
OpenSSL

When the server requires that client connects using a SSL Certificate, use the TLSOptions property of TsgcWeb-
SocketClient to set the certificate files. The certificate must be in PEM format, so if the certificate has a different for-
mat, first must be converted to PEM.

Connection through OpenSSL libraries requires that TLSOptions.IOHandler = iohOpenSSL.

Configure the following properties:

» CertFile: is the path to the certificate in PEM format.

» KeyfFile: is the path to the private key of the certificate.

» RootCertFile: is the path to the root of the certificate.

» Password: if certificate is protected by a password, set here the secret.

COMPONENTS

TsgcWebSocketClient | Certificates SChan-
nel

When the server requires that client connects using a SSL Certificate, use the TLSOptions property of TsgcWeb-
SocketClient to set the certificate files.

Connection through SChannel requires that TLSOptions.IOHandler = iohSChannel.
SChannel support 2 types of certificate authentication:

1. Using a PFX certificate
2. Setting the Hash Certificate of an already installed certificate in the windows system.

PFX Certificate

PFX Certificate is a file that contains the certificate and private key, sometimes you have a certificate in PEM for-
mat, so before use it, you must convert to PFX.
Use the following openssl command to converte a PEM certificate to PFX

openssl pkcsl2 -inkey certificate-pem.key -in certificate-pem.crt -export -out certificate.pfx

Once the certificate has PFX format, you only need to deploy the certificate and set in the TLSOptions.Certificate
property the path to it.

TLSOptions.IOHandler = iohSChannel
TLSOptions.CertFile <certificate path>
TLSOptions.Password <certificate optional password>

Hash Certificate

If the certificate is already installed in the windows certificate store, you only need to know the certificate thumbprint
and set in the TLSOptions.SChannel_Options property.

Finding the hash of a certificate is as easy in powershell as running a dir command on the certificates container.

dir cert:\localmachine\my

The hash is the hexadecimal Thumbprint value.

Directory: Microsoft.PowerShell.Security\Certificate::localmachine\my
Thumbprint Subject

C12A8FCBAE668F866B48F23E753C93D357E9BE1O CN=*.mydomain.com

Once you have the Thumbprint value, you must to set in the TLSOptions.SChannel_Options property the hash
and where is located the certificate.

TLSOptions.IOHandler = iohSChannel
TLSOptions.SChannel_Options.CertHash = <certificate thumbprint>
TLSOptions.SChannel Options.CertStoreName = <certificate store name>

COMPONENTS

TLSOptions.SChannel Options.CertStorePath = <certificate store path>
TLSOptions.Password = <certificate optional password>

COMPONENTS

TsgcWebSocketClient | SChannel Get Con-

nection Info

Once the client has connected to the secure server, you can request info about which Version is using (TLS 1.2,

TLS 1.3...), the cipher used, strength... and more.

Call the function GetInfo of the SChannel Handler to access this info. You can access to the SSL Handler, using
the method OnSSLAfterCreateHandler, which is called after the SChannel Handler is created. After the client con-
nects to server and if the SSL Handler is assigned, call the function Getinfo and if successful, will return the con-

nection data.

var
SSL: TsgcIdSSLIOHandlerSocketSChannel;

oClient

oClient.
oClient.
oClient.

1= TsgcWebSocketClient.Create(nil);
URL := 'wss://www.esegece.com:2053"';
TLSOptions.Version := tlsl_2;

TLSOptions.IOHandler := iohSChannel;
oClient.OnSSLAfterCreateHandler :=
oClient.OnConnect
oClient.Active

:= OnConnectEvent;
:= True;

procedure OnSSLAfterCreateHandlerEvent(Sender: TObject; aType:

aSSLHandler: TIdSSLIOHandlerSocketBase);
begin
if aSSLHandler.ClassType = TsgcIdSSLIOHandlerSocketSChannel
SSL := TsgcIdSSLIOHandlerSocketSChannel(aSSLHandler);
end;

procedure OnConnectEvent(Connection: TsgcWSConnection);
var
oInfo: TsgcSChannelConnectionInfo;

begin
if Assigned(SSL) then
begin
oInfo := SSL.GetInfo;

if (oInfo.Protocol <> tlsl 2) then

OnSSLAfterCreateHandlerEvent;

TwsSSLHandler;

then

raise Exception.Create('Client cannot connect using TLS 1.2'");

end;
end;

154

COMPONENTS

TsgcWebSocketClient | Client Send Text
Message

Once client has connected to server, it can send Text Messages to server. To send a Text Message, just call Write-
Data() method and send your text message.

Send a Text Message
Call To WriteData() method and send a Text message. This method is executed on the same thread that is called.

TsgcWebSocketClientl.WriteData('My First sgcWebSockets Message!.');

If QueueOptions.Text has a different value from gqmNone, instead of be processed on the same thread that is
called, it will be processed on a secondary thread. By default this option is disabled.

Send a Text Message and Wait the Response

Call To WriteAndWaitData() method to send a Text message and wait a response from the server. The function re-
turns the text message received.

TsgcWebSocketClientl.WriteAndwaitDataData('My First sgcWebSockets Message!.');

COMPONENTS

TsgcWebSocketClient | Client Send Binary
Message

Once client has connected to server, it can send Binary Messages to server. To send a Text Message, just call
WriteData() method and send your binary message.

Send a Binary Message

Call To WriteData() method and send a Binary message. This method is executed on the same thread that is
called.

oStream := TMemoryStream.Create(nil);
Try
TsgcWebSocketClientl.WriteData(oStream);
Finally
oStream.Free;
End;

If QueueOptions.Binary has a different value from gmNone, instead of be processed on the same thread that is
called, it will be processed on a secondary thread. By default this option is disabled.

Send a Binary Message and Wait the Response

Call To WriteAndWaitData() method to send a Binary message and wait a response from the server. The function
returns the binary message received.

TsgcWebSocketClientl.WriteAndwaitDataData(oStream);

COMPONENTS

TsgcWebSocketClient | Client Send a Text
and Binary Message

WebSocket protocol only allows to types of messages: Text or Binary. But you can't send a binary with text in the
same message.

One way to solve this, is add a header to binary message before is sent and decode this binary message when is
received.

There are 2 functions in sgcWebSocket Helpers which can be used to set a short description of binary packet, ba-
sically adds a header to stream which is used to identify binary packet.

Before send a binary message, call method to encode stream.

sgcWSStreamwWrite('00001', oStream);
TsgcWebSocketClientl.WriteData(oStream);

When binary message is received, call method to decode stream.

sgcwWSStreamRead(oStream, vID);

The only limitation is that text used to identify binary message, has a maximum length of 10 characters (this can be
modified if you have access to source code).

157

COMPONENTS

TsgcWebSocketClient | Receive Text Mes-
sages

When client receives a Text Message, OnMessage event is fired, just read Text parameter to know the string of
message received.

procedure OnMessage(Connection: TsgcWSConnection; const Text: string);
begin

ShowMessage('Message Received from Server: ' + Text);
end;

By default, client uses neAsynchronous method to dispatch OnMessage event, this means that this event is exe-
cuted on the context of Main Thread, so it's thread-safe to update any control of a form for example.

If your client receives lots of messages or you need to control the synchronization with other threads, set Noti-
fyEvents property to neNoSync, this means that OnMessage event will be executed on the context of connec-
tion thread, so if you require to update any control of a form or access shared objects, you must implement your
own synchronization methods.

COMPONENTS

TsgcWebSocketClient | Receive Binary Mes-
sages

When client receives a Binary Message, OnBinary event is fired, just read Data parameter to know the binary mes-
sage received.

procedure OnBinary(Connection: TsgcWSConnection; const Data: TMemoryStream);

var
oBitmap: TBitmap;

begin
oBitmap := TBitmap.Create;
Try

oBitmap.LoadFromStream(Data);
Imagel.Picture.Assign(oBitmap);

Log(
'#image uncompressed size: ' + IntToStr(Data.Size) +
'. Total received: ' + IntToStr(Connection.RecBytes));
Finally
FreeAndNil(oBitmap);
End;

end;

By default, client uses neAsynchronous method to dispatch OnMessage event, this means that this event is exe-
cuted on the context of Main Thread, so it's thread-safe to update any control of a form for example.

If your client receives lots of messages or you need to control the synchronization with other threads, set
NotifyEvents property to neNoSync, this means that OnMessage event will be executed on the context of connec-
tion thread, so if you require to update any control of a form or access shared objects, you must implement
your own synchronization methods.

COMPONENTS

TsgcWebSocketClient | Client Authentication

TsgcWebSocket client supports 4 types of Authentications:

» Basic: sends an HTTP Header during WebSocket HandShake with User and Password encoded as Basic
Authorization.

» Token: sends a Token as HTTP Header during WebSocket HandShake, just set in
Authentication.Token.AuthToken the required token by server.

» Session: first client request an HTTP session to server and if server returns a session this is passed in GET
HTTP Header of WebSocket HandShake. (* own authorization method for sgcWebSockets library).

» URL: client request authorization using GET HTTP Header of WebSocket HandShake. (* own authorization
method for sgcWebSockets library).

Authorization Basic

Is a simple authorization method where user and password are encoded and passes as an HTTP Header. Just set
User and Password and enable only Basic Authorization type to use this method.

oClient := TsgcWebSocketClient.Create(nil);
oClient.Authorization.Enabled := true;
oClient.Authorization.Basic.Enabled := true;
oClient.Authorization.User := 'your user';
oClient.Authorization.Password := 'your password';
oClient.Authorization.Token.Enabled := false;
oClient.Authorization.URL.Enabled := false;
oClient.Authorization.Session.Enabled := false;
oClient.Active := True;

Authorization Token

Allows to get Authorization using JWT, requires you obtain a Token using any external tool (example: using an
HTTP connection, OAuth2...).

If you Attach an OAuth2 component, you can obtain this token automatically. Read more about OAuth2.

Basically you must set your AuthToken and enable Token Authentication.

oClient := TsgcWebSocketClient.Create(nil);

oClient.Authorization.Enabled := true;
oClient.Authorization.Token.Enabled := true;
oClient.Authorization.Token.AuthToken := 'your token';
oClient.Authorization.Basic.Enabled := false;
oClient.Authorization.URL.Enabled := false;
oClient.Authorization.Session.Enabled := false;
oClient.Active := True;

Authorization Session

First client connects to server using an HTTP connection requesting a new Session, if successful, server returns a
Sessionld and client sends this Sessionld in GET HTTP Header of WebSockets HandShake.
Requires to set UserName and Password and set Session Authentication to True.

oClient := TsgcWebSocketClient.Create(nil);
oClient.Authorization.Enabled := true;
oClient.Authorization.Session.Enabled := true;
oClient.Authorization.User := 'your user';
oClient.Authorization.Password := 'your password';

COMPONENTS

oClient.Authorization.Basic.Enabled := false;
oClient.Authorization.URL.Enabled := false;
oClient.Authorization.Token.Enabled := false;
oClient.Active := True;

Authorization URL

This Authentication method, just passes username and password in GET HTTP Header of WebSockets Hand-
Shake.

oClient := TsgcWebSocketClient.Create(nil);

oClient.Authorization.Enabled := true;
oClient.Authorization.URL.Enabled := true;
oClient.Authorization.User := 'your user';
oClient.Authorization.Password := 'your password';
oClient.Authorization.Basic.Enabled := false;
oClient.Authorization.Session.Enabled := false;
oClient.Authorization.Token.Enabled := false;

oClient.Active := True;

COMPONENTS

TsgcWebSocketClient | Client Exceptions

Sometimes there are some errors in communications, server can disconnect a connection because it's not autho-
rized or a message hasn't the correct format... there are 2 events where errors are captured

OnError

This event is fired every time there is an error in WebSocket protocol, like invalid message type, invalid utf8 string...

procedure OnError(Connection: TsgcWSConnection; const Error: string);
begin

WriteLn('#error: ' + Error);
end;

OnException

This event is fired every time there is an exception like write a socket is not active, access to an object that not ex-
ists

procedure OnException(Connection: TsgcWSConnection; E: Exception);
begin

WriteLn('#exception: ' + E.Message);
end;

By default, when connection is closed by server, an exception will be fired, if you don't want that these excep-
tions are fired, just disable in Options.RaiseDisconnectExceptions.

COMPONENTS

TsgcWebSocketClient | WebSocket Hand-
Shake

WebSocket protocol uses an HTTP HandShake to upgrade from HTTP Protocol to WebSocket protocol. This hand-
shake is handled internally by TsgcWebSocket Client component, but you can add your custom HTTP headers if
server requires some custom HTTP Headers info.

Example: if you need to add this HTTP Header "Client: sgcWebSockets"

procedure OnHandshake(Connection: TsgcWSConnection; var Headers: TStringList);
begin

Headers.Add('Client: sgcWebSockets');
end;

You can check HandShake string before is sent to server using OnHandShake event too.

COMPONENTS

TsgcWebSocketClient | Client Register Pro-
tocol

By default, TsgcWebSocketClient doesn't make use of any SubProtocol, basically websocket sub-protocol are built
on top of websocket protocol and defines a custom message protocol, example of websocket sub-protocols can be
MQTT, STOMP...

WebSocket SubProtocol name is sent as an HTTP Header in WebSocket HandShake, this header is processed by
server and if server supports this subprotocol will accept connection, if is not supported, connection will be closed
automatically

Example: connect to a websocket server with SubProtocol name 'myprotocol'

Client := TsgcWebSocketClient.Create(nil);
Client.Host := 'server host';

Client.Port := server.port;
Client.RegisterProtocol('myprotocol');
Client.Active := True;

164

COMPONENTS

TsgcWebSocketClient | Client Proxies

TsgcWebSocket client support connections through proxies, to configure a proxy connection, just fill the Proxy
properties of TsgcWebSocket client.

Client := TsgcWebSocketClient.Create(nil);
Client.Proxy.Enabled := true;

Client.Proxy.Username := 'user';
Client.Proxy.Password := 'secret';
Client.Proxy.Host := '80.55.44.12';

Client.Proxy.Port := 8080;
Client.Active := True;

COMPONENTS

TsgcWebSocketServer

TsgcWebSocketServer implements Server WebSocket Component and can handle multiple threaded client connec-
tions. Follow the next steps to configure this component:

1. Drop a TsgcWebSocketServer component onto the form
2. Set Port (default is 80). If you are behind a firewall probably you will need to configure it.
3. Set Specifications allowed, by default all specifications are allowed.

RFC6455: is standard and recommended WebSocket specification.

Hixie76: it's a draft and it's only recommended to establish Hixie76 connections if you want to provide support to
old browsers like Safari 4.2

4. The following events are available:
OnConnect: every time a WebSocket connection is established, this event is fired.
OnDisconnect: every time a WebSocket connection is dropped, this event is fired.
OnError: every time there is a WebSocket error (like mal-formed handshake), this event is fired.
OnMessage: every time a client sends a text message and it's received by server, this event is fired.
OnBinary: every time a client sends a binary message and it's received by server, this event is fired.
OnHandhake: this event is fired after the handshake is evaluated on the server side.
OnException: every time an exception occurs, this event is fired.

OnAuthentication: if authentication is enabled, this event is fired. You can check user and password passed by
the client and enable/disable Authenticated Variable.

OnUnknownProtocol: if WebSocket protocol is not detected (because the client is using plain TCP protocol for
example), in this event connection can be accepted or rejected.

OnStartup: raised after the server has started.

OnShutdown: raised after the server has stopped.

OnTCPConnect: public event, is called AFTER the TCP connection and BEFORE Websocket handshake. Is
useful when your server accepts plain TCP connections (because OnConnect event is only fired after first message

sent by client).

OnBeforeHeartBeat: if HeartBeat is enabled, allows to implement a custom HeartBeat setting Handled parame-
ter to True (this means, standard websocket ping won't be sent).

OnSSLGetHandler: This event is raised before SSL handler is created, you can create here your own SSL Han-
dler (needs to be inherited from TldServerlOHandlerSSLBase or TldIOHandlerSSLBase) and set the properties
needed.

OnSSLAfterCreateHandler: This event is called after the SSL Handler is created. Can be used to customize
some of the properties of the IOHandler.

ONnSSLALPNSelect: When the connection is using ALPN this event is raised to set which protocol will be used.

OnSSLVerifyPeer: When the property VerifyCertificate is set to True and the client is using a certificate, this
event will be raised with the certificate data and the option to accept or not the connection.

COMPONENTS

5. Create a procedure and set property Active = True.

Most common uses

e Start
» Server Start
» Server Bindings
» Server Startup - Shutdown
» Server Keep Active

¢ Connections
» Server Keep Connections Alive
» Server Plain TCP
» Server Close Connection
* Client Connections

¢ Authentication
« Server Authentication

¢ Send Messages

» Server Send Text Message

» Server Send Binary Message
* Receive Messages

» Server Receive Text Message
» Server Receive Binary Message

Methods

Broadcast: sends a message to all connected clients.
Message / Stream: message or stream to send to all clients.
Channel: if you specify a channel, the message will be sent only to subscribers.
Protocol: if defined, the message will be sent only to a specific protocol.
Exclude: if defined, list of connection guid excluded (separated by comma).
Include: if defined, list of connection guid included (separated by comma).
WriteData: sends a message to a single or multiple clients. Every time a Client establishes a

WebSocket connection, this connection is identified by a Guid, you can use this Guid to send a mes-
sage to a client.

Ping: sends a ping to all connected clients. If a time-out is specified, it waits a response until a
time-out is exceeded, if no response, then closes the connection.

DisconnectAll: disconnects all active connections.

Start: uses a secondary thread to connect to the server, this prevents your application freezes
while trying to connect.

Stop: uses a secondary thread to disconnect from the server, this prevents your application
freezes while trying to disconnect.

167

COMPONENTS

Properties

Authentication: if enabled, you can authenticate WebSocket connections against a username and password.
Authusers: is a list of authenticated users, following spec:
user=password
Implements 3 types of WebSocket Authentication

Session: client needs to do an HTTP GET passing username and password, and if authenticated, server re-
sponse a Session ID. With this Session ID, client open WebSocket connection passing as a parameter.

URL.: client open Websocket connection passing username and password as a parameter.
Basic: implements Basic Access Authentication, only applies to VCL Websockets (Server and Client) and
HTTP Requests (client web browsers don't implement this type of authentication).
+ CustomHeaders: here you can add the custom headers that will be sent if there si any authentication
error.
Bindings: used to manage IP and Ports.
Connections: contains a list of all clients connections.
Count: Connections number count.
LogFile: if enabled save socket messages to a specified log file, useful for debugging.
Enabled: if enabled every time a message is received and sent by socket it will be saved on a file.
FileName: full path to the filename.

UnMaskFrames: by default True, means that saves the websocket messages received unmasked.

Extensions: you can enable compression on messages sent (if client don't support compression, messages will
be exchanged automatically without compression).

FallBack: if WebSockets protocol it's not supported natively by the browser, you can enable the following fall-
backs:

Flash: if enabled, if the browser hasn't native WebSocket implementation and has flash enabled, it uses Flash
as a Transport.

ServerSentEvents: if enabled, allows to send push notifications from the server to browser clients.
Retry: interval in seconds to try to reconnect to server (3 by default).
HeartBeat: if enabled try to keeps alive Websocket client connections sending a ping every x seconds.
Interval: number of seconds between each ping.
Timeout: max number of seconds between a ping and pong.
HeartBeatType: allows to customize how the HeartBeat works
» hbtAlways: sends a ping every x seconds defined in the Interval.
* hbtOnlylfNoMsgRcvinterval: sends a ping every x seconds only if no messages has been received
during the latest x seconds defined in the Interval property. When using IOHandler = iohDefault, the

ping is sent in the context of the connection thread instead of using a separate thread to send a ping
to all connected clients.

COMPONENTS

TCPKeepAlive: if enabled, uses keep-alive at TCP socket level, in Windows will enable
SIO_KEEPALIVE_VALS if supported and if not will use keepalive. By default is disabled.

Interval: in milliseconds.
Timeout: in milliseconds.

HTTP2Options: by default HTTP/2 protocol is not enabled, it uses HTTP 1.1 to handle HTTP requests. Enabled
this property if you want use HTTP/2 protocol if client supports it.

Enabled: if true, HTTP/2 protocol is supported. If client doesn't supports HTTP/2, HTTP 1.1 will be used as
fallback.

Settings: Specifies the header values to send to the HTTP/2 server.
EnablePush: by default enabled, this setting can be used to avoid server push content to client.
HeaderTableSize: Allows the sender to inform the remote endpoint of the maximum size of the head-
er compression table used to decode header blocks, in octets. The encoder can select any size equal
to or less than this value by using signaling specific to the header compression format inside a header

block. The initial value is 4,096 octets.

InitialWindowsSize: Indicates the sender’s initial window size (in octets) for stream-level flow control.
The initial value is 65,535 octets. This setting affects the window size of all streams.

MaxConcurrentStreams: Indicates the maximum number of concurrent streams that the sender will
allow. This limit is directional: it applies to the number of streams that the sender permits the receiver
to create. Initially, there is no limit to this value.

MaxFrameSize: Indicates the size of the largest frame payload that the sender is willing to receive, in
octets. The initial value is 16,384 octets.

MaxHeaderListSize: This advisory setting informs a peer of the maximum size of header list that the
sender is prepared to accept, in octets. The value is based on the uncompressed size of header
fields, including the length of the name and value in octets plus an overhead of 32 octets for each
header field.

IOHandlerOptions: by default uses normal Indy Handler (every connection runs in his own thread)

iohDefault: default indy IOHandler, every new connection creates a new thread.

iohlOCP: only for windows and requires sgcWebSockets Enterprise Edition, a thread pool handles all con-
nections. Read more about IOCP.

iohEPOLL: only for linux and requires sgcWebSockets Enterprise Edition, a thread pool handles all connec-
tions. Read more about EPOLL.

LoadBalancer: it's a client which connects to Load Balancer Server to broadcast messages and send informa-
tion about the server.

AutoRegisterBindings: if enabled, sends automatically server bindings to load balancer server.

AutoRestart: time to wait in seconds after a load balancer server connection has been dropped and tries to re-
connect; zero means no restart (by default);

Bindings: here you can set manual bindings to be sent to Load Balancer Server, example:

WS://127.0.0.1:80
WSS://127.0.0.2:8888

Enabled: if enabled, it will connect to Load Balancer Server.
Guid: used to identify server on Load Balancer Server side.

Host: Load Balancer Server Host.

COMPONENTS

Port: Load Balancer Server Port.

MaxConnections: max connections allowed (if zero there is no limit).
NotifyEvents: defines which mode to notify WebSocket events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro-
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

Options:
FragmentedMessages: allows handling Fragmented Messages

frgOnlyBuffer: the message is buffered until all data is received, it raises OnBinary or OnMessage
event (option by default)

frgOnlyFragmented: every time a new fragment is received, it raises OnFragmented Event.

frgAll: every time a new fragment is received, it raises OnFragmented Event with All data received
from the first packet. When all data is received, it raises OnBinary or OnMessage event.

HTMLFiles: if enabled, allows to request Web Browser tests, enabled by default.
JavascriptFiles: if enabled, allows to request Javascript Built-in libraries, enabled by default.

RaiseDisconnectExceptions: enabled by default, raises an exception every time there is a disconnection
by protocol error.

ReadTimeOut: time in milliseconds to check if there is data in socket connection, 10 by default.

WriteTimeOut: max time in milliseconds sending data to other peer, 0 by default (only works under Win-
dows OS).

ValidateUTFS8: if enabled, validates if the message contains UTF8 valid characters, by default is disabled.

Software: contains the value of the HTTP Header Server. The default value if the library name and version.

QueueOptions: this property allows to queue the messages in an internal queue (instead of send directly) and

send the messages in the context of the connection thread (QueueOptions only works on Indy based servers
where every connection runs in his own thread), this prevents locks when several threads try to send a message
using the same connection. For every message type: Text, Binary or Ping a queue can be configured, by default
the value set is gmNone which means the messages are not queued. The other types, means different queue lev-
els and the difference between them are just the order where are processed (first are processed gmLevel1, then
gmLevel2 and finally gmLevel3).
Example: if Text and Binary messages have the property set to gmLevel2 and Ping to gmLevel1. The server will
process first the Ping messages (so the ping message is sent first than Text or Binary if they are queued at the
same time), and then process the Text and Binary messages in the same queue. QueueOptions is not supported
when [OHandlerOptions = iohlOCP

ReadEmptySource: max number of times an HTTP Connection is read and there is no data received, 0 by de-
fault (means no limit). If the limit is reached, the connection is closed.

SecurityOptions:

OriginsAllowed: define here which origins are allowed (by default accepts connections from all origins), if
the origin is not in the list closes the connection. Examples:

. Allow all connections to IP 127.0.0.1 and port 5555. OriginsAllowed = "http://127.0.0.1:5555"

170

COMPONENTS

Allow all connections to IP 127.0.0.1 and all ports. OriginsAllowed = "http://127.0.0.1:*"
Allow all connections from any IP. OriginsAllowed = ""

SSL.: enables secure connections.

SSLOptions: used to define SSL properties: certificates filenames, password...

RootCertFile: path to root certificate file.

CertFile: path to certificate file in PEM format.

KeyFile: path to certificate key file in PEM format.

Password: if certificate is secured with a password, set here.
VerifyCertificate: if certificate must be verified, enable this property.
VerifyCertificate_Options:

FailflfNoCertificate: if the client did not return a certificate, the TLS/SSL handshake is immediately
terminated with a "handshake failure" alert.

VerifyClientOnce: only request a client certificate on the initial TLS/SSL handshake. Do not ask for a
client certificate again in case of a renegotiation.

VerifyDepth: is an Integer property that represents the maximum number of links permitted when verifica-
tion is performed for the X.509 certificate.

Version: by default negotiates all possible TLS versions from newer to lower. A specific TLS version can be
selected.

tisUndefined: this is the default value, the client will try to negotiate all possible TLS versions (start-
ing from newest to oldest), till connects successfully.

tls1_0: implements TLS 1.0

tls1_1:implements TLS 1.1

tls1_2: implements TLS 1.2

tls1_3: implements TLS 1.3

OpenSSL_Options:

APIVersion: allows to define which OpenSSL API will be used.
oslAPI_1_0: uses API 1.0 OpenSSL, it's latest supported by Indy
oslAPI_1_1: uses APl 1.1 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses APl 3.0 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 3.0.0 libraries (with TLS 1.3 support).
LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath-
Custom.
LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en-
abled, except under OSX64):
oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.
ECDHE: if enabled, uses ECDHE instead of RSA as key exchange. Recommended to enable ECD-
HE if you use OpenSSL 1.0.2.
CipherList: leave blank to use the default ciphers, if you want to customize the cipher list, set the val-
ue in this property. Example: ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256
Curvelist: leave blank to use the default curves. You can set your own curve list names, for
example: P-521:P-384:P-256:brainpoolP256r1
MinVersion: set here the minimum version accepted by the Server. By default, the value
is tisUndefined which means the minimum version is the same which has been set in the Version
property. Example: if you want to set the Server to only accept TLS 1.2 and TLS 1.3 set the following
values.

171

COMPONENTS

SSLOptions.Version :=tls1_3;
SSLOptions.OpenSSL_Options.MinVersion := tls1_2;

ThreadPool: if enabled, when a thread is no longer needed this is put into a pool and marked as inactive (do
not consume CPU cycles), it's useful if there are a lot of short-lived connections. The ThreadPool is not compatible
with IOCP, so please don't enable it when IOCP is enabled.

MaxThreads: max number of threads to be created, by default is 0 meaning no limit. If max number is
reached then the connection is refused.

PoolSize: size of ThreadPool, by default is 32.

WatchDog: if enabled, restart the server after unexpected disconnection.
Interval: seconds before reconnects.
Attempts: max number of reconnects, if zero, then unlimited.

Throttle: used to limit the number of bits per second sent/received.

172

COMPONENTS

TsgcWebSocketServer | Start Server

The first you must set when you want start a Server is set a Listening Port, by default, this is set to port 80 but you
can change for any port.
Once the port is set, there are 2 methods to start a server.

Active Property

If you set Active property to true, server will start to listening all incoming connection on port set.

oServer := TsgcWebSocketServer.Create(nil);
oServer.Port := 80;
oServer .Active := true;

If you set Active property to false, server will stop and close all active connections.

oServer.Active := false;

Start / Stop methods

While if you call Active property the process of start / stop server is done in the same thread, calling Start and Stop
methods will be executed in a secondary thread.

oServer := TsgcWebSocketServer.Create(nil);
oServer.Port := 80;
oServer.Start();

If you call Stop() method, server will stop and close all active connections.

oServer.Stop();

You can use the method ReStart, to Stop and Start server in a secondary thread.

If you change the Port after closing a server, to start listening on a different port, call the method Bindings.Clear()
after closing the server to delete all previous bindings. Otherwise the server will try to bind to the previous bindings.

173

COMPONENTS

TsgcWebSocketServer | Server Bindings

By default, if you only fill Port property, server binds listening port of ALL IPs, so if for example, you have 3 IP:
127.0.0.1, 80.5411.22 and 12.55.41.17. Your server will bind this port on 3 IPs.

Usually is recommended only binding to needed IPs, here is where you can user Bindings property.

Instead of use Port property, just use Binding property and fill with IP and Port required.

Example: bind Port 5555 to IP 127.0.0.1 and IP 80.58.25.40

oServer := TsgcWebSocketServer.Create(nil);
With oServer.Bindings.Add do
begin

IP := '127.0.0.1';

Port := 5555;
end;
With oServer.Bindings.Add do
begin

IP := '80.58.25.40';

Port := 5555;
end;
oServer .Active := true;

If you change the Port after closing a server, to start listening on a different port, call the method Bindings.Clear()
after closing the server to delete all previous bindings. Otherwise the server will try to bind to the previous bindings.

174

COMPONENTS

TsgcWebSocketServer | Server Startup
Shutdown

Once you have set all required configurations of your server, there are 2 useful events to know when server has
started and when has stopped.

OnStartup

This event is fired when server has started and can process new connections.

procedure OnStartup(Sender: TObject);
begin

WriteLn('#server started');
end;

OnShutdown

This event is fired after server has stopped and no more connections are accepted.

procedure OnShutdown(Sender: TObject);
begin

WriteLn('#server stopped');
end;

175

COMPONENTS

TsgcWebSocketServer | Server Keep Active

Once server is started and OnShutdown event is fired, sometimes server can stopped for any reason. If you want
to restart server after an unexpected close, you can use WatchDog property

WatchDog

If WatchDog is enabled, when server detects a Shutdown, WatchDog try to restart again every X seconds until
server is active again.

Example: restart every 10 seconds after an unexpected stop with unlimited attempts.

oServer := TsgcWebSocketServer.Create(nil);
oServer .WatchDog.Interval := 10;
oServer.WatchDog.Attempts := 0;
oServer.WatchDog.Enabled := true;
oServer.Active := true;

176

COMPONENTS

TsgcWebSocketServer | Server SSL

Server can be configured to use SSL Certificates, in order to get a Production Server with a server certificate, you
must purchase a Certificate from a well known provider: Namecheap, godaddy, Thawte... For testing purposes
you can use a self-signed certificate (check out in Demos/Chat which uses a self-signed certificate).

Certificate must be in PEM format, PEM (from Privacy Enhanced Mail) is defined in RFCs 1421 through 1424, this
is a container format that may include just the public certificate (such as with Apache installs, and CA certificate
files /etc/ssl/certs), or may include an entire certificate chain including public key, private key, and root certificates.
To create a single pem certificate, just open your private key file, copy the contents and paste on certificate file.

Example:

certificate.crt

To enable SSL, just enable SSL property and configure the paths to CertFile, KeyFile and RootFile. If certificate
contains entire certificate (public key, private key...) just set all paths to the same certificate.

Another property you must set is SSLOptions.Port, this is the port used for secure connections.

Simple SSL Configuration

Example: configure SSL in IP 127.0.0.1 and Port 443

oServer := TsgcWebSocketServer.Create(nil);

oServer.SSL := true;

oServer.SSLOptions.CertFile := 'c:\certificates\mycert.pem';
oServer.SSLOptions.KeyFile := 'c:\certificates\mycert.pem';
oServer.SSLOptions.RootCertFile := 'c:\certificates\mycert.pem';
oServer.SSLOptions.Port := 443;

oServer.Port := 443;

oServer.Active := true;

SSL and None SSL

You can allow to server, to listening more than one IP and Port, check Binding article which explains how works.
Server can be configured to allow SSL connections and None SSL connections at the same time (of course listen-

177

COMPONENTS

ing on different ports). You only need to bind to 2 different ports and configure port for ssl connections and port for
none ssl connections.

Example: configure server in IP 127.0.0.1, port 80 (none encrypted) and 443 (SSL)

oServer := TsgcWebSocketServer.Create(nil);
With oServer.Bindings.Add do
begin
IP := '127.0.0.1"';
Port := 80;
end;
With oServer.Bindings.Add do
begin
IP := '127.0.0.1"';
Port := 443;
end;
oServer.Port := 80;
oServer.SSL := true;
oServer.SSLOptions.CertFile := 'c:\certificates\mycert.pem';
oServer.SSLOptions.KeyFile := 'c:\certificates\mycert.pem';
oServer.SSLOptions.RootCertFile := 'c:\certificates\mycert.pem';
oServer.SSLOptions.Port := 443;
oServer.Active := true;

178

COMPONENTS

TsgcWebSocketServer | Server Verify Certifi-
cate

By default, the server doesn't verify the peer certificates. To configure the server to verify the client certificate imple-
ment the next steps:

1. Set the property SSLOptions.VerifyCertificate = true

Handle the event OnSSLVerifyPeer and implement the following code to be notified every time a client connects
with a certificate.

function OnSSLVerifyPeerEvent(Sender: TObject; Certificate:
TIdX509; AOk: Boolean; ADepth, AError: Integer; var Accept: Boolean);
begin
// ... validate the certificate
if Certificate_OK then
Accept := True
else
Accept := False;
end;

Note that the event OnSSLVerifyPeer is only called if the client provides a certificate, if a client doesn't pro-
vides a certificate, the event is not fired.

You can configure the server that only allow SSL connections using a certificate, to do this, set the property
» SSLOptions.VerifyCertificate_Options.FaillfNoCertificate = true

If the client doesn't provide a certificate, the connection will be closed in the SSL Handshake.

179

COMPONENTS

TsgcWebSocketServer | Server Keep Con-
nections Alive

Once your client has connected to server, sometimes connection can be closed due to poor signal, connection er-
rors... use to keep connection alive.

property allows to send a Ping every X seconds to maintain connection alive. Some servers, close TCP connec-
tions if there is no data exchanged between peers. solves this problem, sending a ping every a specific interval.
Usually this is enough to maintain a connection active, but you can set a TimeOut interval if you want to close con-
nection if a response from client is not received after X seconds.

Example: send a ping to all connected clients every 30 seconds

oServer := TsgcWebSocketServer.Create(nil);
oServer..Interval := 30;

oServer..Timeout := 0;

oServer..Enabled := true;

oServer.Active := true;

COMPONENTS

TsgcWebSocketServer | Server Plain TCP

WebSocket server accepts WebSocket, HTTP, SSE... protocols, but can work too with plain tcp connections. Read
more about TCP Connections.

There are 2 events, which can be used to handle TCP connections better.
OnTCPConnect

This event is called after a client connects to server and before any handshake between client and server. OnCon-
nect event is only fired after client sends a message (to allow server detect which is the protocol to be used).

This event allows to know that a new client is trying to connect to server and server can accept or not the connec-
tion. By default, server always accept connection.

OnUnknownProtocol

This event is called when server receives a first message from client but cannot detect if is any of known protocols.

In this event, server can accept or not protocol

OnConnect

This event is fired after a successful and complete connection, if connection is plain TCP, is fired after protocol is
accepted in OnUnknownProtocol event.

COMPONENTS

TsgcWebSocketServer | Server Close Con-
nection

A single Connection can be closed using Close or Disconnect methods.

Disconnect

TsgcWSConnection has a method called Disconnect(), that allows to disconnect connection at socket level. If you
call this method, socket will be disconnected directly without waiting any response from client. You can send a
Close Code with this method.

Close

TsgcWSConnection has a method called Close(), which allows to send a message to server requesting to close
connection, if client receives this message, must close the connection and server will receive a notification that con-
nection is closed. You can send a Close Code with this method.

DisconnectAll

Disconnects all active connections. This method is called automatically before server stops listening, but you can
call this method at any time.

COMPONENTS

TsgcWebSocketServer | Client Connections

To access to the active client connections, you can use the Connections property to iterate through the list and ac-
cess to the client connection class. The Connections properties access to a threaded list, so first lock the list and
when you finish, unlock the list.

procedure DoClientIPAddresses;
var
i: Integer;
oList: TList;
oConnection: TsgcWSConnectionServer;

begin
oList := TsgcWebSocketHTTPServerl.LockList;
Try
for i := 0 to oList.Count - 1 do
begin
oConnection := TsgcWSConnectionServer(TIdContext(oList[i]).Data);
ShowMessage(oConnection.IP + ':' + IntToStr(oConnection.Port));
end;
Finally
TsgcWebSocketHTTPServerl.UnLockList;
End;

end;

COMPONENTS

TsgcWebSocketServer | Server Authentica-
tion

TsgcWebSocket server supports 3 types of Authentications:

» Basic: read an HTTP Header during WebSocket HandShake with User and Password encoded as Basic
Authorization.

» Session: first client request an HTTP session to server and if server returns a session this is passed in GET
HTTP Header of WebSocket HandShake. (* own authorization method for sgcWebSockets library).

* URL: read request authorization using GET HTTP Header of WebSocket HandShake. (* own authorization
method for sgcWebSockets library).

You can set a list of Authenticated users, using AuthUsers property, just set your users with the following format:
user=password

OnAuthentication

Every time server receives an Authentication Request from a client, this event is called to return if user is authenti-
cated or not.
Use Authenticated parameter to accept or not the connection.

procedure OnAuthentication(Connection: TsgcWSConnection; aUser, aPassword: string;
var Authenticated: Boolean);

begin
if ((auUser = 'user') and (aPassword = 'secret')) then
Authenticated := true
else
Authenticated := false;
end;

OnUnknownAuthentication

If Authentication is not supported by default, like JWT, still you can use this event to accept or not the connection.
Just read the parameters and accept or not the connection.

procedure OnUnknownAuthentication(Connection: TsgcWSConnection; AuthType, AuthData: string;
var aUser, aPassword: string; var Authenticated: Boolean);

begin
if AuthType = 'Bearer' then
begin
if AuthData = 'jwt_token' then
Authenticated := true
else
Authenticated := false;
end
else
Authenticated := false;
end;

184

COMPONENTS

TsgcWebSocketServer | Server Send Text
Message

Once client has connected to server, server can send text messages. To send a Text Message, just call WriteData()
method to send a message to a single client or use Broadcast to send a message to all clients.

Send a Text Message

Call To WriteData() method and send a Text message.

TsgcWebSocketServerl.WriteData('guid', 'My First sgcWebSockets Message!.');

If QueueOptions.Text has a different value from gqmNone, instead of be processed on the same thread that is
called, it will be processed on a secondary thread. By default this option is disabled.

QueueOptions doesn't work if the property IOHandlerOptions.IOHandlerType = iohlOCP (due to the IOCP architec-

ture, this feature is not supported).

You can call to WriteData() method from TsgcWSConnection too, example: send a message to client when con-
nects to server.

procedure OnConnect(Connection: TsgcWSConnection);
begin

Connection.WriteData('Hello From Server');
end;

Send a message to ALL connected clients

Call To Broadcast() method to send a Text message to all connected clients.

TsgcWebSocketServerl.Broadcast('Hello From Server');

COMPONENTS

TsgcWebSocketServer | Server Send Binary
Message

Once client has connected to server, server can send binary messages. To send a Binary Message, just call Write-
Data() method to send a message to a single client or use Broadcast to send a message to all clients.

Send a Text Message

Call To WriteData() method and send a Binary message.

TsgcWebSocketServerl.WriteData('guid', TMemoryStream.Create);

If QueueOptions.Binary has a different value from gmNone, instead of be processed on the same thread that is
called, it will be processed on a secondary thread. By default this option is disabled.

QueueOptions doesn't work if the property IOHandlerOptions.IOHandlerType = iohlOCP (due to the IOCP architec-
ture, this feature is not supported).

You can call to WriteData() method from TsgcWSConnection too, example: send a message to client when con-
nects to server.

procedure OnConnect(Connection: TsgcWSConnection);
begin

Connection.WriteData(TMemoryStream.Create);
end;

Send a message to ALL connected clients

Call To Broadcast() method to send a Binary message to all connected clients.

TsgcWebSocketServerl.Broadcast(TMemoryStream.Create);

COMPONENTS

TsgcWebSocketServer | Server Receive Text
Message

When server receives a Text Message, OnMessage event is fired, just read Text parameter to know the string of
message received.

procedure OnMessage(Connection: TsgcWSConnection; const Text: string);
begin

ShowMessage('Message Received from Client: ' + Text);
end;

By default, server uses neAsynchronous method to dispatch OnMessage event, this means that this event is ex-
ecuted on the context of Main Thread, so it's thread-safe to update any control of a form for example.

If your server receives lots of messages or you need to control the synchronization with other threads, set Noti-
fyEvents property to neNoSync, this means that OnMessage event will be executed on the context of connec-
tion thread, so if you require to update any control of a form or access shared objects, you must implement your
own synchronization methods.

187

COMPONENTS

TsgcWebSocketServer | Server Receive Bi-
nary Message

When server receives a Binary Message, OnBinary event is fired, just read Data parameter to know the binary
message received.

procedure OnBinary(Connection: TsgcWSConnection; const Data: TMemoryStream);

var
oBitmap: TBitmap;

begin
oBitmap := TBitmap.Create;
Try

oBitmap.LoadFromStream(Data);
Imagel.Picture.Assign(oBitmap);

Log(
'#image uncompressed size: ' + IntToStr(Data.Size) +
'. Total received: ' + IntToStr(Connection.RecBytes));
Finally
FreeAndNil(oBitmap);
End;

end;

By default, server uses neAsynchronous method to dispatch OnMessage event, this means that this event is ex-
ecuted on the context of Main Thread, so it's thread-safe to update any control of a form for example.

If your server receives lots of messages or you need to control the synchronization with other threads, set Noti-
fyEvents property to neNoSync, this means that OnMessage event will be executed on the context of connec-
tion thread, so if you require to update any control of a form or access shared objects, you must implement your
own synchronization methods.

188

COMPONENTS

TsgcWebSocketServer | Server Read Head-
ers from Client

When client connects to WebSocket server, sends a list of headers with information about client connection. In
order to read these client headers, you can OnHandshake event of Server component, which is called when server
receives the headers from client and before sends a response to client.

Client headers are stores in HeadersRequest property of TsgcWSConnectionServer.

procedure OnServerHandshake(Connection: TsgcWSConnection; var Headers: TStringlList);
begin

ShowMessage(TsgcWSConnectionServer (Connection).HeadersRequest.Text);
end;

COMPONENTS

TsgcWebSocketHTTPServer

TsgcWebSocketHTTPServer implements Server WebSocket Component and can handle multiple threaded client
connections as TsgcWebSocketServer, and allows to server HTML pages using a built-in HTTP Server, sharing the
same port for WebSocket connections and HTTP requests.

Follow the next steps to configure this component:
1. Drop a TsgcWebSocketHTTPServer component in the form
2. Set Port (default is 80). If you are behind a firewall probably you will need to configure it.
3. Set Specifications allowed, by default all specifications are allowed.
RFC6455: is standard and recommended WebSocket specification.

Hixie76: it's a draft and it's only recommended to establish Hixie76 connections if you want to provide support to
old browsers like Safari 4.2

4. The following events are available:
OnConnect: every time a WebSocket connection is established, this event is fired.
OnDisconnect: every time a WebSocket connection is dropped, this event is fired.
OnError: every time there is a WebSocket error (like mal-formed handshake), this event is fired.
OnMessage: every time a client sends a text message and it's received by server, this event is fired.
OnBinary: every time a client sends a binary message and it's received by server, this event is fired.
OnHandhake: this event is fired after handshake is evaluated on the server side.

OnCommandGet: this event is fired when HTTP Server receives a GET, POST or HEAD command requesting a
HTML page, an image... Example:

AResponseInfo.ContentText := '<HTML><HEADER>TEST</HEAD><BODY>Hello!</BODY></
HTML>"';

OnCommandOther: this event is fired when HTTP Server receives a command different of GET, POST or
HEAD.

OnCreateSession: this event is fired when HTTP Server creates a new session.
OnlinvalidSession: this event is fired when an HTTP request is using an invalid/expiring session.
OnSessionStart: this event is fired when HTTP Server starts a new session.
OnCommandOther: this event is fired when HTTP Server closes a session.

OnException: this event is fired when HTTP Server throws an exception.

OnAuthentication: if authentication is enabled, this event if fired. You can check user and password passed by
the client and enable/disable Authenticated Variable.

OnUnknownProtocol: if WebSocket protocol is not detected (because the client is using plain TCP protocol for
example), in this event connection can be accepted or rejected.

OnBeforeHeartBeat: if HeartBeat is enabled, allows to implement a custom HeartBeat setting Handled parame-
ter to True (this means, standard websocket ping won't be sent).

file:/C:/Users/Sergio/AppData/Local/Temp/RHTMP/DELPHI%20PDF4M3Dui/TsgcWebSocketHTTPServer.htm

COMPONENTS

OnBeforeForwardHTTP: allows to forward a HTTP request to another HTTP server. Use forward property to en-
able this and set the destination URL.

OnHTTPUploadBeforeSaveFile: the event is fired when a new file has been uploaded and before is saved to
disk file, allows to modify the filename where will be saved.

OnHTTPUploadAfterSaveFile: the event is fired after a new file has been uploaded and saved to disk file.
OnHTTPUploadReadInput: the event is fired when the form post reads an input variable different from the file.

OnSSLGetHandler: This event is raised before SSL handler is created, you can create here your own SSL Han-
dler (needs to be inherited from TldServerlOHandlerSSLBase or TIdIOHandlerSSLBase) and set the properties
needed.

OnSSLAfterCreateHandler: This event is called after the SSL Handler is created. Can be used to customize
some of the properties of the IOHandler.

ONnSSLALPNSelect: When the connection is using ALPN this event is raised to set which protocol will be used.

OnSSLVerifyPeer: When the property VerifyCertificate is set to True and the client is using a certificate, this
event will be raised with the certificate data and the option to accept or not the connection.

* In some cases, you may get a high consume of cpu due to unsolicited connections, in these cases, just return an
error 500 if it's a HTTP request or close connection for Unknown Protocol requests.

5. Create a procedure and set property Active = true.

Most common uses

e HTTP

HTTP Server Requests

HTTP Dispatch Files

HTTP/2 Server

HTTP/2 Server Push

HTTP/2 Alternate Service

HTTP/2 Server Threads

HTTP Post Big Files

HTTP 404 Error without Response Body

¢ Other
e HTTP Server Sessions

Methods

Broadcast: sends a message to all connected clients.
Message / Stream: message or stream to send to all clients.
Channel: if you specify a channel, the message will be sent only to subscribers.
Protocol: if defined, the message will be sent only to a specific protocol.
Exclude: if defined, list of connection guid excluded (separated by comma).

Include: if defined, list of connection guid included (separated by comma).

COMPONENTS

WriteData: sends a message to a single or multiple clients. Every time a Client establishes a
WebSocket connection, this connection is identified by a Guid, you can use this Guid to send a mes-
sage to a client.

Ping: sends a ping to all connected clients.

DisconnectAll: disconnects all active connections.

Properties

Connections: contains a list of all clients connections.
Bindings: used to manage IP and Ports.

DocumentRoot: here you can define a directory where you can put all html files (javascript, HTML, CSS...) if a
client sends a request, the server automatically will search this file on this directory, if it finds, it will be served.

Extensions: you can enable compression on messages sent (if client don't support compression, messages will
be exchanged automatically without compression).

MaxConnections: max connections allowed (if zero there is no limit).

Count: Connections number count.

AutoStartSession: if SessionState is active, when the server gets a new HTTP request, creates a new session.
SessionState: if active, enables HTTP sessions.

KeepAlive: if enabled, connection will stay alive after the response has been sent.

ReadStartSSL: max. number of times an HTTPS connection tries to start.

SessionList: read-only property used as a container for TIdHTTPSession instances created for the HTTP serv-
er.

SessionTimeOut: timeout of sessions.

HTTP20ptions: by default HTTP/2 protocol is not enabled, it uses HTTP 1.1 to handle HTTP requests. Enabled
this property if you want use HTTP/2 protocol if client supports it.

Enabled: if true, HTTP/2 protocol is supported. If client doesn't supports HTTP/2, HTTP 1.1 will be used as
fallback.

FragmentedData: this property allows to configure how handle the fragments received.

* h2fdOnlyBuffer: it's the default option, the response is dispatched only when has been received the
latest packet.

+ h2fdAll: the response is dispatched for every packet received (one or more) on the event
OnHTTP2ResponseFragment and on the event OnHTTP2Response when the latest packet has been
received.

» h2fdOnlyFragmented:: the response is only dispatched in the event OnHTTP2ResponseFragment
for every packet received (one response can be compound of 1 or multiple packets).

Settings: Specifies the header values to send to the HTTP/2 server.

EnablePush: by default enabled, this setting can be used to avoid server push content to client.

HeaderTableSize: Allows the sender to inform the remote endpoint of the maximum size of the head-
er compression table used to decode header blocks, in octets. The encoder can select any size equal

COMPONENTS

to or less than this value by using signaling specific to the header compression format inside a header
block. The initial value is 4,096 octets.

InitialWindowsSize: Indicates the sender’s initial window size (in octets) for stream-level flow control.
The initial value is 65,535 octets. This setting affects the window size of all streams.

MaxConcurrentStreams: Indicates the maximum number of concurrent streams that the sender will
allow. This limit is directional: it applies to the number of streams that the sender permits the receiver
to create. Initially, there is no limit to this value.

MaxFrameSize: Indicates the size of the largest frame payload that the sender is willing to receive, in
octets. The initial value is 16,384 octets.

MaxHeaderListSize: This advisory setting informs a peer of the maximum size of header list that the
sender is prepared to accept, in octets. The value is based on the uncompressed size of header
fields, including the length of the name and value in octets plus an overhead of 32 octets for each
header field.

Events: here you can configure if you want be notified when there is a new HTTP/2 connection or not.

OnConnect: if enabled when there is a new HTTP/2 connection, OnConnect event will be called (by
default is disabled).

OnDisconnect: if enabled when there is a new HTTP/2 disconnection, OnDisconnect event will be
called (by default is disabled).

HTTPUploadFiles: by default when a client sends a file using a POST stream, the file is saved in memory. If you
want to save these streams directly as files to avoid memory problems, you set the StreamType to pstFileStream
and the files will be saved in the hard disk. Read more about Post Big Files.

MinSize: Minimum size in bytes of the stream to be saved as a file stream. By default is zero, which means
all streams will be saved as FileStreams (if StreamType = pstFileStream).

RemoveBoundaries: the files uploaded using POST multipart/form-data, are encapsulated in boundaries, if
this property is enabled, the files will be extracted from boundaries and saved in the hard disk.

SaveDirectory: the folder where the files will be saved. If empty, will be saved in the same folder where is
the application.

StreamType: the type of the stream where the stream will be saved, by default memory.

pstMemoryStream: as memory stream.
pstFileStream: as file stream.

COMPONENTS

TsgcWebSocketHTTPServer | HTTP Server

Requests

Use OnCommandGet to handle HTTP client requests. Use the following parameters:
* RequestiInfo: contains HTTP request information.

* Responselnfo: is the HTTP response to HTTP Request.
» ContentText: is the response in text format.
+ ContentType: is the type of Content-Type.
* ResponseNo: number of HTTP response, example: 200.

procedure OnCommandGet(AContext: TIdContext; ARequestInfo: TIdHTTPRequestInfo;
AResponseInfo: TIdHTTPResponseInfo);
begin
if ARequestInfo.Document = '/' then
begin
AResponseInfo.ContentText := '<html><head><title>Test Page</title></head><body></body></html>";
AResponseInfo.ContentType := 'text/html';
AResponseInfo.ResponseNo := 200;
end;
end;

194

COMPONENTS

TsgcWebSocketHTTPServer | HTTP Dis-
patch Files

When a client request a file, OnCommandGet event is fired, but you can use DocumentRoot property to dispatch
automatically files.

Example: if you set DocumentRoot to c:/wwwilfiles. Every time a new file is requested, will search in this folder if
file exists and if exists, will be dispatched automatically.

COMPONENTS

TsgcWebSocketHTTPServer | HTTP/2 Server

sgcWebSockets HTTP Server allows to handle HTTP/1.1 and HTTP/2.0 requests, you can enable HTTP/2 protocol
using HTTP2Options of Server.

Set HTTP2Options.Enabled = true to allow the server to accept HTTP/2 protocol requests. The requests can be
processed by user exactly equal than with HTTP/1.1 protocol, read more.

When HTTP/2 protocol is enabled, server will still support HTTP/1.1 requests.

By default, OnConnect and OnDisconnect events won't be called when there is a new HTTP/2 connection, but this
can be modified accessing to properties HTTP2Options.Events, here you can customize if you want be notified
every time there is a new HTTP/2 connection and/or disconnection.

COMPONENTS

TsgcWebSocketHTTPServer | HTTP/2 Server
Push

HTTP usually works with Request/Response pattern, where client REQUEST a resource to SERVER and SERVER
sends a RESPONSE with the resource requested or an error. Usually the client, like a browser, makes a bunch of
requests for those assets which are provided by the server.

TYPICAL WEB SERVER COMMUNICATION

USER REQUESTS index. html

USER RECEIVES :%i"_-,'].l'-_‘."p. C5%

WEEB BROWSER WEB SERVER

The main problem of this approach is that first client must send a request to get the resource, example: index.html,
wait till server sends the response, the client reads the content and then make all other requests, example:
styles.css

HTTP/2 server push tries to solve this problem, when the client requests a file, if server thinks that this file needs
another file/s, those files will be PUSHED to client automatically.

WEB SERVER COMMUNICATION
WITH HTTP/2 SERVER PUSH

USER REQUESTS index . html .e
LUSER RECEIVES index . html
USER RECEIVES styles.css

WEB BROWSER WEB SERVER

In the prior screenshot, first client request index.html, server reads this request and sends as a response 2 files:
index.html and styles.css, so it avoids a second request to get styles.css

Configure Server Push

Following the prior screenshots, you can configure your server so every time there is a new request for /index.html
file, server will send index.html and styles.css

Use the method PushPromiseAddPreLoadLinks, to associate every request to a push promise list.

server := TsgcWebSocketHTTPServer.Create(nil);
oLinks := TStringList.Create;
Try
oLinks.Add('/styles.css');
server.PushPromiseAddPreLoadLinks('/index.html', oLinks);
Finally

197

COMPONENTS

oLinks.Free;
End;

procedure OnCommandGet (AContext: TIdContext; ARequestInfo: TIdHTTPRequestInfo; AResponseInfo:

TIdHTTPResponseInfo);
begin
if ARequestInfo.Document = '/index.html' then
begin
AResponseInfo.ContentText := '
AResponseInfo.ContentType := '

text/html';

AResponseInfo.ResponseNo := 200;
end
else if ARequestInfo.Document = '/styles.css' then
begin

[

AResponseInfo.ContentText 5
AResponseInfo.ContentType := 'text/css';
AResponseInfo.ResponseNo := 200;
end;
end;

Using the chrome developer tool, you can view how the styles.css file is pushed to client.

[w ﬂ Elements Console Sources Metwork Performance Memory Application Security
® O ¥ Q [J Preserve log () Disable cache | Online v + *
Filter [J Hide data URLs 2] | ¥HR J5 €S53 Img Media Font Doc WS Manifest Other
[Blocked Requests
(O Use large request rows (J Group by frame
Show overview [JJ Capture screenshots
| 10 ms 20 ms 30 ms 40 ms 50 mes 60 ms 70 ms 20 ms
MName Status Protocol Type Initiator Size
| | indexhtml 200 h2 document Other 213B
| | styles.css 200 h2 styleshest Push / index.html 155 B

[| favicon.ico 200 h2 text/hitmil Other 169 B

Lighthouse 1 Q :

[J Has blocked cockies

90 ms 100 ms
Time ‘Waterfall
2ms 1] |
Ims |
2ms | |

COMPONENTS

TsgcWebSocketHTTPServer | HTTP/2 Alter-
nate Service

The Alt-Svc HTTP header is used to inform the clients that the same resource can be reached from another
service or protocol, this is useful if you want inform the HTTP clients that your server supports HTTP/2 for exam-
ple.

Example: if your server is running on a local IP 127.0.0.1 and is listening on 2 ports: 80 (non encrypted) and 443
(encrypted). You can inform the clients, that HTTP/2 is supported on port 443 using the following HTTP header

Alt-Svc: h2=":443"

When HTTP/2 is enabled, automatically adds this header if the connection is not running on HTTP/2 protocol.
You can enable or disable this feature using the property HTTP2Options.AltSvc.

COMPONENTS

TsgcWebSocketHTTPServer | HTTP/2 Server
Threads

See below the differences between HTTP 1.1 and HTTP 2.0:

HTTP 1.1

In traditional HTTP behavior, when making multiple requests over the same connection, the client has to wait for
the response of each request before sending the next one. This sequential approach significantly increases the
load time of a website's resources. To address this issue, HTTP/1.1 introduced a feature called pipelining, allowing
a client to send multiple requests without waiting for the server's responses. The server, in turn, responds to the
client in the same order as it received the requests.

While pipelining appeared to be a solution, it faced challenges:

» Server Ignorance or Response Corruption: Some servers either ignored pipelined requests or corrupted
the responses, leading to unreliable communication.

+ Head-of-Line Blocking: The first request in the pipeline could block subsequent requests, causing a delay
in the processing of other requests. This phenomenon, known as head-of-line blocking, resulted in slower
page loading times.

In an effort to optimize page loading from servers supporting HTTP/1.1, the Web-Browsers implemented a
workaround. It opens six-eight parallel connections to the server, enabling the simultaneous transmission of multi-
ple requests. This parallelism aims to mitigate the issues associated with pipelining and improve overall page load
times.

The choice of six-eight parallel connections by the Web-Browsers is based on optimization considerations. The
specific reasons behind selecting this number may involve a trade-off between resource utilization, network efficien-
cy, and avoiding potential bottlenecks.

HTTP 2.0

In response to the constraints encountered in pipelining, HTTP/2 introduced a feature called multiplexing. Multi-
plexing allows for more efficient communication between the client and server by enabling the concurrent
transmission of multiple requests and responses over a single connection.

HTTP/2 utilizes a binary framing mechanism, which means that HTTP messages are broken down into smaller, in-
dependent units called frames. These frames can be interleaved and sent over the connection independently of
one another. At the receiving end, the frames are reassembled to reconstruct the original HTTP message.

This binary framing mechanism is fundamental to achieving multiplexing in HTTP/2. It enables the browser to send
multiple requests over the same connection without encountering blocking issues. As a result, browsers like
Chrome utilize the same connection ID for HTTP/2 requests, allowing for efficient and uninterrupted communication
between the client and server.

In essence, HTTP/2's multiplexing feature, enabled by the binary framing mechanism, enhances the efficiency and
speed of data exchange between clients and servers by facilitating concurrent transmission of multiple requests
and responses over a single connection.

COMPONENTS

TsgcWebSocketHTTPServer

To improve the performance of the HTTP/2 protocol, the requests are dispatched by default in a Pool Of Threads
(by default 32) every time a new HTTP/2 request is received by the server, this avoid waits when a single connec-
tion sends a lot of concurrent requests which will require processing sequentially (in the context of the connection
thread) in the absence of this pool of threads.

The behaviour of the PoolOfThreads can be configured in the following properties.

+ HTTP20ptions.PoolOfThreads.Enabled: (by default false) enable to dispatch the http/2 requests in the
pool of threads instead of the connection thread.

+ HTTP20ptions.Threads: (by default 32) the number of threads used to handle the HTTP/2 requests. Set a
number according the number of processors of your server.

To fine-tune the requests, selecting which must be processed in the Pool Of Threads (because are time consum-
ing) while others can be processed in the connection thread, you <can wuse the event
OnHttp2BeforeAsyncRequest, this event is raised before queue the request in the pool of threads, use the para-
meter Async to set if the request is threaded or not.

procedure OnHTTP2BeforeAsyncRequest(Sender: TObject; Connection: TsgcWSConnection; const ARequestInfo: TIdHTTPRec
begin
if ARequestInfo.Document = '/fast-request' then
ASync := False;
end;

COMPONENTS

TsgcWebSocketHTTPServer | 404 Error with-
out Response Body

By default, the Indy library adds some content body in HTTP responses if there is no ContentText or ContentStream
assigned, if you want to return an empty Response body, because of 404 error or similar, you can use the following
trick.

Create a new TStringStream without content and Assign to ContentStream property of HTTP Response, this way
the HTTP Response will be sent without the HTML Tags used by default.

Example

procedure OnCommandGet(AContext: TIdContext; ARequestInfo: TIdHTTPRequestInfo;
AResponseInfo: TIdHTTPResponseInfo);

begin
AResponseInfo.ContentStream := TStringStream.Create('');
AResponseInfo.ContentType := 'text/html';
AResponseInfo.ResponseNo := 404;

end;

COMPONENTS

TsgcWebSocketHTTPServer | Sessions

HTTP is state-less protocol (at least till HTTP 1.1), so client request a file, server sends a response to client and
connection is closed (well, you can enable keep-alive and then connection is not closed immediately, but this is far
beyond the purpose of this article). The use of the sessions, allows to store some information about client, this can
be used during a client login for example. You can use whatever session unique ID, search in the list of sessions if
already exists and if not exists, create a new session. Session can be destroyed after some time without using it or
manually after client logout.

Configuration

There are some properties in TsgcWebSocketHTTPServer which enables/disables sessions in server component.
Let's see the most important:

Property Description

This is the first property which has to be enabled in order to use Sessions. Without this prope

SessionState
! abled, sessions won't work

SessionTimeout Here you must set a value greater than zero (in milliseconds) for max time session will be act
Sessions can be created automatically (AutoStartSession = true) or manually (AutoStartSess
AutoStartSession false). If Sessions are created automatically, server will use RemotelP as unique identifier to ¢

there is an active session stored.

TsgcWebSocketHTTPServerl.SessionState := True;
TsgcWebSocketHTTPServerl.SessionTimeout := 600000;
AutoStartSession := False;

Create Session

In order to create a new session, we must create a new session id which is unique, you can use whatever, exam-
ple: if client is authenticating, you can use user + password + remoteip as session id.
Then, we search in Session list if already exists, if not exists, we create a new one.

When a new session is create OnSessionStart event is called and when session is closed, OnSessionEnd event
is raised.

procedure OnCommandGet(AContext: TIdContext; ARequestInfo: TIdHTTPRequestInfo;
AResponseInfo: TIdHTTPResponseInfo);
var
vID: String;
oSession: TIdHTTPSession;
begin
if ARequestInfo.Document = '/' then
AResponseInfo.ServeFile(AContext, 'yourpathhere\index.html')

else
begin
// check if user is valid
if not ((ARequestInfo.AuthUsername = 'user') and (ARequestInfo.AuthPassword = 'pass')) then
AResponseInfo.AuthRealm := 'Authenticate'
else
begin
// create a new session id with authentication data
vID := ARequestInfo.AuthUsername + '_' + ARequestInfo.AuthPassword + '_' + ARequestInfo.RemoteIP;

// search session
oSession := TsgcWebSocketHTTPServerl.SessionList.GetSession(vID, ARequestInfo.RemoteIP);

COMPONENTS

// create new session if not exists
if not Assigned(oSession) then

oSession := TsgcWebSocketHTTPServerl.SessionList.CreateSession(ARequestInfo.RemoteIP, vID);
AResponseInfo.ContentText := '<html><head></head><body>Authenticated</body></html>";
AResponseInfo.ResponseNo := 200;

end;
end;
end;

204

COMPONENTS

TsgcWebSocketHTTPServer | Stream Video

If you want to stream a file video using the server, you can use the function IndyStreamFileVideo to stream a file
video using chunked as transfer encoding.

The function takes 3 parameters:

+ AContext: it's taken from OnCommandGet event.
» AResponselnfo: it's taken from OnCommandGet event.

+ aFileName: it's the full filename of the video to stream.

+ ContentType: by default is "video/mpeg".

+ aBufferSize: by default is 1024 bytes.

Example: stream a video when a user goes to the document /video.mp4 and this video is in the folder c:
\videos\video.mp4

procedure OnServerCommandGet(AContext: TIdContext; ARequestInfo: TIdHTTPRequestInfo; AResponseInfo: TIdHTTPRespor

begin
if ARequestInfo.Document = '/video.mp4' then
IndyStreamFileVideo(Acontext, AResponseInfo, 'C:\videos\video.mp4')
else

AResponseInfo.ResponseNo := 404;
end;

COMPONENTS

TsgcWebSocketServer HTTPAPI

The HTTP Server API enables applications to communicate over HTTP without using Microsoft Internet Information
Server (IIS). Applications can register to receive HTTP requests for particular URLs, receive WebSocket requests,
and send WebSocket responses. The HTTP Server API includes SSL support so that applications can exchange
data over secure HTTP connections without IIS. It is also designed to work with 1/0O completion ports.

The server supports the following protocols:

* WebSockets (Requires Windows 8 or later)
« HTTP 1.1
* HTTP/2 (Requires Windows 2016+ or Windows 10+).

By default, this component requires that your application run as Administrator mode, for URL registration.
If the URL have already be registered using an external tool like netsh, you can run without Admin rights,
disable the property BindingOptions.ConfigureSSLCertificate to allow start the application without admin
rights.

Set FastMM4/FastMM5 as the first unit of your project.

Follow the next steps to configure this component:

1. Drop a TsgcWebSocketServer HTTPAPI component in the form

2. Define the listening address and port:

Server.Host :
Server.Port :

'127.0.0.1";
80;

3. Set Specifications allowed, by default all specifications are allowed.
RFC6455: is standard and recommended WebSocket specification.

Hixie76: it's a draft and it's only recommended to establish Hixie76 connections if you want to provide support to
old browsers like Safari 4.2

4. If you want, you can handle events:
OnConnect: every time a WebSocket connection is established, this event is fired.
OnDisconnect: every time a WebSocket connection is dropped, this event is fired.
OnError: every time there is a WebSocket error (like mal-formed handshake), this event is fired.
OnMessage: every time a client sends a text message and it's received by server, this event is fired.
OnBinary: every time a client sends a binary message and it's received by server, this event is fired.
OnHandhake: this event is fired after the handshake is evaluated on the server side.
OnException: this event is fired when HTTP Server throws an exception.

OnAuthentication: if authentication is enabled, this event is fired. You can check user and password passed by
the client and enable/disable Authenticated Variable.

OnUnknownProtocol: this event doesn't work at the moment of write this document.

OnBeforeHeartBeat: if HeartBeat is enabled, allows to implement a custom HeartBeat setting Handled parame-
ter to True (this means, standard websocket ping won't be sent).

COMPONENTS

OnAsynchronous: every time an asynchronous event has been completed, this event is called.

OnBeforeForwardHTTP: allows to forward a HTTP request to another HTTP server. Use forward property to en-
able this and set the destination URL.

OnAfterForwardHTTP: allows to know the result of the forwarded request.

OnTCPConnect: public event, is called AFTER the TCP connection and BEFORE Websocket handshake.

5. Create a procedure and set property Active = true

URL Reservation

The HTTP.SYS server uses URL reservation to assign which URL endpoints will be used by the HTTP.SYS server.
Basic URL Reservation

This is the most easy simple mode to configure the Server, basically you only set the Host and Port that the
HTTP.SYS server will handle.
Example: if your server runs on the IP 127.0.0.1 and Port 80, just set the following properties

Server.Host := '127.0.0.1";
Server.Port := 80;

If the server runs in more than one IP and you want bind to multiple IPS, use the NewBinding Method. First clear
the Host and Bindings property and then use the NewBinding method to define all Server Bindings.

Server.Host := '';

Server.Bindings.Clear;
Server.Bindings.NewBinding('127.0.0.1', 80, '");
Server.Bindings.NewBinding('80.50.55.11', 80, '');

If the server requires SSL connections, do the following to define the Host and Port which will be used to handle
SSL connections.

Server.Host := '127.0.0.1"';

Server.Port := 443;

Server.SSL := True;

Server.SSLOptions.Hash := 'CERTIFICATE_HASH';

If the server requires SSL connections with multiple IP Addresses, first clear the Host and Bindings property and
the register the new Bindings.

Server.Host := '';

Server.Bindings.Clear;

Server.Bindings.NewBinding('127.0.0.1', 443, '', true, 'CERTIFICATE_HASH1');
Server.Bindings.NewBinding('80.50.55.11"', 443, '', true, 'CERTIFICATE_HASH2');

Most common uses

* Configuration
o URL Reservation
e Connection
¢ OnDisconnect not fired
« SSL
e HTTPAPI Server SSL
« Self-Signed Certiifcates
HTTP

207

COMPONENTS

¢ Custom Headers

¢ Send Text Response
* Send File Response
» Post Big Files

* HTTP/2

» Disable HTTP/2

Properties

Host: if the property has a value, it will be used to register the URL. If you use the Bindings property to de-
fine the server bindings, clear the value of this property.

Port: the default listening port, if the Host property has a value, the Host + Port will be used to register the
URL.

Timeouts: allows overriding default timeouts of HTTP API Server.

EntityBody: the time, in seconds, allowed for the request entity body to arrive.

DrainEntityBody: The time, in seconds, allowed for the HTTP Server API to drain the entity body on
a Keep-Alive connection.

RequestQueue: The time, in seconds, allowed for the request to remain in the request queue before
the application picks it up.

IdleConnection: The time, in seconds, allowed for an idle connection.

HeaderWait: The time, in seconds, allowed for the HTTP Server API to parse the request header.
MinSendRate: The minimum sends rate, in bytes-per-second, for the response. The default response
sends rate is 150 bytes-per-second.

MaxConnections: maximum number of connections (zero means unlimited, value by default).

MaxBandwidth: maximum allowed bandwidth rate in bytes per second (zero means unlimited, value by de-
fault).

ThreadPoolSize: by default 32 (max recommended value 64), allows setting number of threads of HTTP
API Server.

ReadBufferSize: by default 16384, allows to modify the size of the buffer size when read socket data.

WriteTimeOut: only applies when Asynchronous = False, the value is measured in milliseconds. When this
property is greater than zero, if the time to send a message is greater than the value set in the property, the
request is cancelled and the connection is closed. By default, is zero, so there is no timeout writing a mes-
sage. The internal thread that handles the timeouts, by default uses an interval of 10 seconds, so it means
that every 10 seconds checks if there is any message that have exceeded the timeout. You can modify the
value of the interval setting the value in the property WriteTimeoutInterval (in seconds, the value must be
greater or equal to 5 seconds).

Asynchronous: by default is disabled, if enabled, messages sent don't wait till completed. You can check
when asynchronous is completed OnAsynchronous event.

SSLOptions: here you can customize ssl properties.

CertStoreName: (optional) allows to set the name of certificate store where is certificate. If no value
is set, 'MY' is assumed as default name.

Hash: this is the hexadecimal thumbprint value of certificate and is required by server to retrieve cer-
tificate. You can find hash of certificate using powershell, running a "dir" comand on the certificates
store, example: dir cert:\localmachine\my.

Methods

Broadcast: sends a message to all connected clients.

COMPONENTS

Message / Stream: message or stream to send to all clients.

Channel: if you specify a channel, the message will be sent only to subscribers.
Protocol: if defined, the message will be sent only to a specific protocol.
Exclude: if defined, list of connection guid excluded (separated by comma).

Include: if defined, list of connection guid included (separated by comma).

WriteData: sends a message to a single or multiple clients. Every time a Client establishes a
WebSocket connection, this connection is identified by a Guid, you can use this Guid to send a mes-
sage to a client.

Ping: sends a ping to all connected clients.

DisconnectAll: disconnects all active connections.

HTTPUploadFiles: by default when a client sends a file using a POST stream, the file is saved in memory. If you
want to save these streams directly as files to avoid memory problems, you set the StreamType to pstFileStream

and the files will be saved in the hard disk. Read more about Post Big Files.

MinSize: Minimum size in bytes of the stream to be saved as a file stream. By default is zero, which means
all streams will be saved as FileStreams (if StreamType = pstFileStream).

RemoveBoundaries: the files uploaded using POST multipart/form-data, are encapsulated in boundaries, if
this property is enabled, the files will be extracted from boundaries and saved in the hard disk.

SaveDirectory: the folder where the files will be saved. If empty, will be saved in the same folder where is
the application.

StreamType: the type of the stream where the stream will be saved, by default memory.

pstMemoryStream: as memory stream.
pstFileStream: as file stream.

COMPONENTS

HTTPAPI | URL Reservation

HTTP.SYS URL reservation is a feature in the Windows operating system that allows a user to reserve a specific
Uniform Resource Locator (URL) for their application or service. When a URL is reserved using HTTP.SYS, the op-
erating system will intercept any incoming HTTP requests for that URL and route them to the specified application
or service.

To reserve a URL using HTTP.SYS, an application or service must first register the URL with the HTTP.SYS driver
by making a call to the HTTP API. The application or service specifies the URL, the HTTP method (e.g., GET,
POST), and any additional settings such as authentication requirements.

Once the URL is registered, HTTP.SYS will intercept any incoming HTTP requests for that URL and look up the
registered application or service based on the URL and method. If a matching application or service is found, the
HTTP.SYS driver will pass the request to that application or service for processing.

NETSH Commands

Register an URL
In this example, the URL http://example.com:80/ is being registered for the user DOMAIN\user. You can replace this
with your desired URL and user.

netsh http add urlacl url=http://example.com:80/ user=DOMAIN\user

Delete an URL
In this example, the URL http://fexample.com:80/ is being deleted. You can replace this with the URL you want to
delete.

netsh http delete urlacl url=http://example.com:80/

Show All URLs
This command will display a list of all registered URL reservations on the system.

netsh http show urlacl

TsgcWebSocketServer_HTTPAPI

The HTTP.SYS server, register the URLs automatically when it's started. This is done using the following parame-
ters and methods.

» Host and Port: if Host not empty and the Port is different from zero, the server will try to register the URL.
Example: the URL https://127.0.0.1:5000 will be registered using the following properties
o Host ='127.0.0.1
> Port = 5000
o SSL =True
* NewBinding: use this method to register one or multiple URLs.
> Register the url https://127.0.0.1:5000 --> NewBinding('127.0.0.1", 5000, '/', True)
o Register the url http://+:5000/ws/ --> NewBinding('+', 5000, '/ws/")

The URL registration requires admin privileges in the following cases:

COMPONENTS

» Port Number is below 1024
* The host is a wildcard "+", instead of an ip address.

If you want to register the port 443 for all IP Addresses of the server and listen only on the endpoint "/ws/" but you
don't want to run the server with admin rights, do the following steps:

* Register the URL using netsh
o netsh http add urlacl url=https://+:443/ws/ user=DOMAIN\user
+ Configure the server with the following binding
o NewBinding('+', 443, 'fws/', True);
+ Disable the property ConfigureSSLCertificate
o TsgcWebSocketServer HTTPAPI.BindingOptions.ConfigureSSLCertificate = false;
» Configure the SSL Certificate
o HTTPAPI Server SSL

COMPONENTS

TsgcWebSocketServer HTTPAPI | HTTPAPI
Server SSL

Server can be configured to use SSL Certificates, in order to get a Production Server with a server certificate, you
must purchase a Certificate from a well known provider: Namecheap, godaddy, Thawte... For testing purposes
you can use a self-signed certificate (check out in Demos/Chat which uses a self-signed certificate). Read the fol-
lowing article How Create a Self-signed certificate.

Once you have your certificate, you must configure in Server which certificate will use to encrypt connections.

Certificate Hash

First you need to know which is the Hash of your certificate. Finding the hash of a certificate is as easy in power-
shell as running a dir command on the certificates container.

dir cert:\localmachine\my

The hash is the hexadecimal Thumbprint value.

Directory: Microsoft.PowerShell.Security\Certificate::localmachine\my
Thumbprint Subject

C12A8FCBAE668F866B48F23E753C93D357E9BE1O CN=*.mydomain.com

Once you have the Thumbprint value, just set in TsgcWebSocketServer_HTTPAPI.TLSOptions.Hash property.
Once you have set hash, just set TsgcWebSocketServer HTTPAPI.SSL = true and your server is know ready to get
started.

If you want to register the certificate manually using netsh, use the following command:

netsh http add sslcert ipport=<IP>:<PORT> certhash=<THUMBPRINT> appid="{<GUID>}"

<IP>: Specifies the local IP address for the binding. Don't use a wildcard binding. Use a valid IP address.
<PORT>: Specifies the port for the binding.

<THUMBPRINT>: The X.509 certificate thumbprint.

<GUID>: A developer-generated GUID to represent the app for informational purposes.

COMPONENTS

TsgcWebSocketServer HTTPAPI | Self-
Signed Certificates

If you require some certificate for your own testings, you can create a self-signed certificate in your testing ma-
chine, follow the next steps:

1. Run Powershell as Administrator.
2. Run the following command to create the certificate:

New-SelfSignedCertificate -DnsName localhost -CertStoreLocation "cert:\LocalMachine\My"

If successful, you will get a confirmation about new certificate created. Just copy Thumbprint and paste on
TsgcWebSocketServer_HTTPAPLTLSOptions.Hash property.

EN Adrinistrador; Windows PowerShell — O >

Yicrosoft Corporation. Todos los derechos reservados.
Prueba 1la nueva tecnologia Powershell multiplataforma https://aka.ms/pscoreb

PS C:\WIND 32> New-SelfsignedCertificate localhost

PSParentPath: Microsoft.Powershell.Security\Certificate::LocalMachine\My

Thumbprint Subject

3. Optional, you can add your self-signed certificate as a trusted certificate authority

Run MMC -32 as administrator

3.1. Select File / Add or Remove Snap-in
3.2. Select Certificate and then click Add
3.3. Select computer account and press Next.

3.4. Select Local computer and press Ok. You will now your Certificates.

4.5. Select your certificate from Personal / Certificates and Paste on Trusted Root Certificates Authorities /
Certificates.

COMPONENTS

TsgcWebSocketServer HTTPAPI | Disable
HTTP/2

HTTP/2 protocol is enabled by default in Server 2016+ and Windows 10+ OS. In some old browsers or HTTP
clients, you might encounter an error because protocol is not fully supported. You can prevent these errors by dis-
abling HTTP/2 protocol.

How Disable HTTP/2

» Open the Window Registry Editor
» Go to the following registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\HT TP\Parameters

Add the following DWORD values and set both values to zero.

+ EnableHttp2TIs
» EnableHttp2Cleartext

» Reboot the computer.

214

COMPONENTS

TsgcWebSocketServer HTTPAPI | Custom
Headers

You can customize the response of HTTP.SYS server using the CustomHeaders property of response object.
Just set the value of CustomHeaders with the Header Name + Header Value separated by NewLine Characters.
Example: if you want to add the following headers, find below a sample code

Access-Control-Allow-Origin: *
Acces-Control-Allow-Methods: GET, POST, OPTIONS, PUT, PATCH, DELETE

procedure OnHTTPRequest(aConnection: TsgcWSConnection_HTTPAPI; const aRequestInfo: THttpServerRequest;
var aResponseInfo: THttpServerResponse);
begin
aResponseInfo.ResponseNo := 200;
aResponseInfo.CustomHeaders := 'Access-Control-Allow-Origin: *' + #13#10 + 'Acces-Control-Allow-Methods: ' +
'"GET, POST, OPTIONS, PUT, PATCH, DELETE';
end;

COMPONENTS

TsgcWebSocketServer HTTPAPI | Send Text
Response

Use the event OnHTTPRequest to handle the HTTP Requests.
The class THttpServerRequest contains the HTTP Request Data.

Document: the Document the peer is trying to access.

Method: the HTTP Method ('GET', POST'...)

Headers: the Headers of HTTP request.

AcceptEncoding: accept encoding variable, example: "gzip, deflate, br".
ContentType: example: "text/html"

Content: content of request if exists.

* QueryParams: the query parameters.

» Cookies: the cookies if exists.

» ContentLength: size of the content.

+ AuthExists, AuthUsername, AuthPassword: authentication request data.
» Stream: if the http request has a body, this is the stream of the body.

The class THttpServerResponse contains the HTTP response Data.

+ ContentText: is the response as text.

+ ContentType: example: "text/html". If you want encode the ContentText with UTF8, set the charset="utf-8'.
Example: text/html; charset=utf-8

+ CustomHeaders: if you need to send your own headers use this variable

» AuthRealm: if the server requires authentication, set this variable.

* ResponseNo: the HTTP response number, example: 200 means the response if correct.

+ ContentStream: if the response contains a stream, set here (don't free the stream, it will be freed automati-
cally).

» FileName: if the response is a filename, set here the full path to the filename.

+ Date, Expires, LastModified: datetime variables of the response.

» CacheControl: allows to customize the cache behaviour.

Example: if the server receives a GET request to the document "/test.html" send a OK response, otherwise send a
404 if it's a GET request or error 500 if it's another method.

procedure OnHTTPRequest(aConnection: TsgcWSConnection_ HTTPAPI;
const aRequestInfo: THttpServerRequest;
var aResponseInfo: THttpServerResponse);

begin
if aRequestInfo.Method = 'GET' then
begin
if aRequestInfo.Document = '/test.html' then
begin
aResponseInfo.ResponseNo := 200;
aResponseInfo.ContentText := 'OK';
aResponseInfo.ContentType := 'text/html; charset=UTF-8';
end
else
aResponseInfo.ResponseNo := 404;
end
else
aResponseInfo.ResponseNo := 500;
end;

COMPONENTS

TsgcWebSocketServer HTTPAPI | Send File
Response

Use the FileName property of THttpServerResponse object if you want to send a filename as a response to a
HTTP request.

procedure OnHTTPRequest(aConnection: TsgcWSConnection_HTTPAPI;
const aRequestInfo: THttpServerRequest;
var aResponseInfo: THttpServerResponse);

begin
if aRequestInfo.Method = 'GET' then
begin
if aRequestInfo.Document = '/test.zip' then
begin
aResponseInfo.ResponseNo := 200;
aResponseInfo.FileName := 'c:\download\test.zip';
aResponseInfo.ContentType := 'application/zip';
end
else
aResponseInfo.ResponseNo := 404;
end
else
aResponseInfo.ResponseNo := 500;
end;

217

COMPONENTS

TsgcWebSocketServer HTTPAPI | OnDis-
connect not fired

First times working with HTTPAPI Server, it's very common that you will see that OnDisconnect event is not fired
just when client closes connection. The reason is that HTTPAPI Server works a bit differently than other servers like
Indy. In Indy server there is a thread for every connection and this thread is checking every x milliseconds if
connection is active. The HTTPAPI Server uses a thread-pool that handles all connections and it's not check-
ing for every connection if it's active or not.

In order to get notified when client closes connection, do the following configuration:
1. If you use a TsgcWebSocketClient, set Options.CleanDisconnect := True. This means that before the connec-

tion is closed, the client will try to send a notification to server that connection will be closed. If the server receives
this message, OnDisconnect event will be called.

2. For the others disconnections, the only solution is write something to the socket and if fails means the connec-
tion is disconnected. Enable HeartBeat on HTTPAPI server, and send an interval of 60 seconds for example and a
timeout of 0. This configuration means that every 60 seconds all connections will be ping and if any is disconnect-
ed, OnDisconnect event will be fired. You can put a lower value of HeartBeat.Interval, but don't put it too low (1
second for example it's too low) because the performance of the server will be affected.

COMPONENTS

TsgcWebSocketClient WinHTTP

TsgcWebSocketClient implements Client VCL WebSocket Component and can connect to a WebSocket Server, it's
based on WinHTTP API and requires Windows 8 or higher. Follow the next steps to configure this component:

1. Drop a TsgcWebSocketClient_WinHTTP component in the form

2. Set Host and Port (default is 80) to connect to an available WebSocket Server. You can set URL property and
Host, Port, Parameters... will be updated from URL. Example: wss://127.0.0.1:8080/ws/ will result:

oClient := TsgcWebSocketClient_WinHTTP.Create(nil);
oClient.Host := '127.0.0.1';
oClient.Port := 80;
oClient.TLS := True;
oClient.Options.Parameters := '/ws/';
3. You can select if you want TLS (secure connection) or not, by default is not Activated.
4. The following events can be used to customize the websocket client flow:
OnConnect: when a WebSocket connection is established, this event is fired
OnDisconnect: when a WebSocket connection is dropped, this event is fired
OnError: every time there is a WebSocket error (like mal-formed handshake), this event is fired
OnMessage: every time the server sends a text message, this event is fired

OnBinary: every time the server sends a binary message, this event is fired

OnFragmented: when receives a fragment from a message (only fired when Options.FragmentedMessages =
frgAll or frgOnlyFragmented).

OnException: every time an exception occurs, this event is fired.
OnBeforeConnect: before the client tries to connect to server, this event is called.
OnBeforeWatchDog: if WatchDog is enabled, allows to implement a custom WatchDog setting Handled para-

meter to True (this means, won't try to connect to server). You can change the Server Connection properties too
before try to reconnect, example: connect to a fallback server if first fails.

8. Create a procedure and set property Active = True.

Methods

WriteData: sends a message to a WebSocket Server. Could be a String or TStream.

Start: uses a secondary thread to connect to the server, this prevents your application freezes while trying to
connect.

Stop: uses a secondary thread to disconnect from the server, this prevents your application freezes while trying
to disconnect.

Connect: try to connect to the server and wait till the connection is successful or there is an error.

Disconnect: try to disconnect from the server and wait till disconnection is successful or there is an error.

COMPONENTS

Properties

Authentication: if enabled, WebSocket connection will try to authenticate passing a username and password.
Implements 1 type of WebSocket Authentication
Basic: client open WebSocket connection passing username and password inside the header.
Asynchronous: by default, requests are synchronous, execution of your application stops when you make new
requests and resumes when you get a response. If you don't want that requests stop your application, enable this
property.
Host: IP or DNS name of the server.
HeartBeat: if enabled try to keeps alive a WebSocket connection sending a ping every x seconds.
Interval: number of seconds between each ping.
Timeout: max number of seconds between a ping and pong.
ReadTimeout: max time in milliseconds to read messages.
Port: Port used to connect to the host.

NotifyEvents: defines which mode to notify websocket events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro-
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

Options: allows customizing headers sent on the handshake.
Parameters: define parameters used on GET.
Origin: customize connection origin.
FragmentedMessages: allows handling Fragmented Messages
frgOnlyBuffer: the message is buffered until all data is received, it raises OnBinary or OnMessage
event (option by default)
frgOnlyFragmented: every time a new fragment is received, it raises OnFragmented Event.
frgAll: every time a new fragment is received, it raises OnFragmented Event with All data received
from the first packet. When all data is received, it raises OnBinary or OnMessage event.
Protocol: if exists, shows the current protocol used

Proxy: here you can define if you want to connect through an HTTP Proxy Server.

WatchDog: if enabled, when an unexpected disconnection is detected, tries to reconnect to the server automati-
cally.

Interval: seconds before reconnects.
Attempts: max number of reconnects, if zero, then unlimited.

TLS: enables a secure connection.

COMPONENTS

TLSOptions: customize the TLS connection.

VerifyCertificate: if enabled, the Server Certificate will be validated and if the certificate is incorrect the con-
nection will be closed. By default is disabled.

VerifyCertificateOptions: by default, all the certificate's properties are validated, if you want to ignore any of
them, find below the options available.

IgnoreCertCNInvalid: Allows an invalid common name in a certificate; that is, the server name specified
by the application doesn't match the common name in the certificate.

IgnoreCertDatelnvalid: Allows an invalid certificate date, that is, an expired or not-yet-effective certificate.

IgnoreCertWrongUsage: Allows the identity of a server to be established with a non-server certificate (for
example, a client certificate).

IgnoreUnknownCA: Allows an invalid certificate authority.

COMPONENTS

TsgcWebSocketLoadBalancerServer

The component TsgcWebSocketLoadBalancerServer allows to Load Balancing WebSocket and HTTP Proto-
cols. For websockedt protocol allows to distributing messages across a group of servers and distributes clients con-
nections using a random sequence or fewer connections algorithm.

The Load Balancer Server, inherits all methods and properties from TsgcWebSocketHTTPServer.

Load Balancer Configuration

The Load Balancer server it's a descendant of TsgcWebSocketHTTPServer, so read the documentation about the
TsgcWebSocketHTTPServer to know how to configure it.

Additionally, the Load Balancer has the property LoadBalancer, which has the following properties:

» LoadBalancing: configure here how distribute the connections
o |bRandom: (default) every time a new client request a new connection, it will return a random server.
o |bConnections: every time a new client request a new connection, it will return server with fewer
clients connected.
* Protocols: configure which protocols are enabled
o WebSocket: if true, the websocket connections will be handled by the Load Balancer Server.
o HTTP: if true, the http connections will be handled by the Load Balancer Server.

Backup Server Configuration

The Backup Servers (the servers behind the load balancer) can be a TsgcWebSocketServer, TsgcWebSock-
etHTTPServer or a Datasnap Server.

Those servers have a property called LoadBalancer where you can configure the connection between the Load-
Balancer Server and the Backup Servers.

+ Enabled: set to true if you want to use as a backup server.

* Host: the host were is the LoadBalancer.

+ Port: the listening port of the LoadBalancer.

* Guid: unique id that identifies this server.

» Bindings: the public addresses accessible were the connections will be forwarded. Example: if the Backup
WebSocket server is listening on port 8000 and the ip address is 1.1.1.1, use the following: ws://
1.1.1.1:8000;

+ AutoRegisterBindings: if enabled, the LoadBalancer Server will use the Bindings property of the backup
server to configure the public bindings.

» AutoRestart: in seconds, if greater than zero, the load balancer client of the backup server will enable an in-
ternal watchdog that every x seconds, will check if the connection is alive, if it's closed, it will try to recon-
nect.

Events

* OnBeforeSendServerBinding: raised before binding is sent to a new client connection.
* OnClientConnect: every time a client connection is stablished, this event is fired.

+ OnClientDisconnect: every time a client connection is dropped, this event is fired.

* OnClientMessage: raised when a new text message is received from the server.

* OnClientBinary: raised when a new binary message is received from the server.

https://www.esegece.com/help/sgcWebSockets/#t=Components%2FDatasnap%2FDatasnap.htm

COMPONENTS

» OnClientFragmented: raised when a new fragmented message is received from the server.
* OnServerConnect: raised when a new server connects to LoadBalancerServer.

* OnServerDisconnect: raised when a server disconnects from LoadBalancerServer.

* OnServerReady: raised when a server is ready to accept messages.

* OnLoadBalancerHTTPRequest: the event is called when there is a new HTTP Request and before it's for-
warded to a backup server.

* OnLoadBalancerHTTPResponse: the event is called with the HTTP Response sent by the backup server.

COMPONENTS

TsgcWebSocketProxyServer

TsgcWebSocketProxyServer implements a WebSocket Server Component which listens to client WebSocket con-
nections and forwards data connections to a normal TCP/IP server. This is especially useful for browser connec-
tions because allows a browser to virtually connect to any server.

224

COMPONENTS

TsgclWWebSocketClient

TsgclWWebSocketClient implements Intraweb WebSocket Component and can connect to a WebSocket Server.
Follow the next steps to configure this component:

1. Drop a TsgclWWebSocketClient component in the form

2. Set Host and Port (default is 80) to connect to an available WebSocket Server. You can set URL property and
Host, Port, Parameters... will be updated from URL. Example: wss://127.0.0.1:8080/ws/ will result:

oClient := TsgcIWwebSocketClient.Create(nil);
oClient.Host := '127.0.0.1';

oClient.Port := 80;

oClient.TLS := True;
oClient.Options.Parameters := '/ws/';

3. You can select if you want TLS (secure connection) or not, by default is not Activated.
4. Set Transports allowed.
WebSockets: it will use standard WebSocket implementation
Emulation: if browser doesn't support WebSockets, then it will use a loop AJAX callback connection
5. If you want, you can handle events
OnAsyncConnect: when a WebSocket connection is established, this event is fired
OnAsyncDisconnect: when a WebSocket connection is dropped, this event is fired
OnAsyncError: every time there is a WebSocket error (like mal-formed handshake), this event is fired
OnAsyncMessage: every time the server sends a message, this event is fired
OnAsyncEmulation: this event is fired on every loop of emulated connection

6. Create an Async Procedure and set property Active := True

Methods

Open: Opens a WebSocket Connection.

Close: Closes a WebSocket Connection.

WriteData: sends a message to WebSocket Server.

COMPONENTS

Properties

Connected: is a read-only variable and returns True if the connection is Active, otherwise returns False.
JSOpen: here you can include JavaScript Code on the client side when a connection is opened.
JSClose: here you can include JavaScript Code on the client side when a connection is closed.

JSMessage: here you can include JavaScript Code on the client side when clients receive a message from
the server. You can get Message String, using Javascript variable "text".

JSError: here you can include JavaScript Code on the client side when an error is raised. You can get
Message Error, using Javascript variable "text".

COMPONENTS

TsgcWSConnection

TsgcWSConnection is a wrapper of client WebSocket connections, you can access to this object on Server or
Client Events.

Methods

WriteData: sends a message to the client.

Close: sends a close message to other peer. A "CloseCode" can be specified optionally. By default, the value sent
is NORMAL close code. If you send a Negative Close code, the reason of closing won't be sent.

Disconnect: close client connection from the server side. A "CloseCode" can be specified optionally.
Ping: sends a ping to the client.

AddTCPEndOfFrame: if connection is plain TCP, allows to set which byte/s define the end of message. Message
is buffered till is received completely.

Subscribed: returns if the connection is subscribed to a custom channel.

Subscribe: subscribe this connection to a channel. Later you can Broadcast a message from server component
to all connections subscribed to this channel.

UnSubscribe: unsubscribe this from connection from a channel.

Properties

Protocol: returns sub-protocol used on this connection.

IP: returns Peer IP Address.

Port: returns Peer Port.

LocallP: returns Host IP Address.

LocalPort: returns Host Port.

URL: returns URL requested by the client.

Guid: returns connection ID.

HeadersRequest: returns a list of Headers received on Request.

HeadersResponse: returns a list of Headers sent as Response.

RecBytes: number of bytes received.

SendBytes: number of bytes sent.

Transport: returns the transport type of connection:
trpRFC6455: a normal WebSocket connection.
trpHixie76: a WebSocket connection using draft WebSocket spec.

trpFlash: a WebSocket connection using Flash as FallBack.

227

COMPONENTS

trpSSE: a Server-Sent Events connection.

trpTCP: plain TCP connection.

TCPEndOfFrameScanBuffer: allows to define which method use to find end of message (if using trpTCP as tans-
port).

eofScanNone: every time a new packet arrive, OnBinary event is called.

eofScanLatestBytes: if latest bytes are equal to bytes added with AddTCPEndOfFrame method, OnBinary
message is called, otherwise this packet is buffered

eofScanAllBytes: search in all packet if find bytes equal to bytes added with AddTCPEndOfFrame method.
If true, OnBinary message is called, otherwise this packet is buffered

Data: user session data object, here you can pass an object and access this every time you need, for example:
you can pass a connection to a database, user session properties...

COMPONENTS

Protocols

With WebSockets, you can implement Sub-protocols allowing to create customized communications, for example
you can implement a sub-protocol over WebSocket protocol to communicate a customized application using JSON
messages, and you can implement another sub-protocol using XML messages.

When a connection is open on the Server side, it will validate if sub-protocol sent by the client is supported by the
server, if not, then it will close the connection. A server can implement several sub-protocols, but only one can be
used on a single connection.

Sub-protocols are very useful to create customized applications and be sure that all clients support the same com-
munication interface.

Although the protocol name is arbitrary, it's recommended to use unique names like "dataset.esegece.com"
With sgcWebSockets package, you can build your own protocols and you can use built-in sub-protocols provided:

1. Protocol MQTT: MQTT is a Client Server publish/subscribe messaging transport protocol. It is lightweight, open,
simple, and designed so as to be easy to implement.

2. Protocol AppRTC: is a webrtc demo application developed by Google and Mozilla, it enables both browsers to
“talk” to each other using the WebRTC API.

3. Protocol WebRTC: open source project aiming to enable the web with Real-Time Communication (RTC) capa-
bilities.

4. Protocol Files: implemented using binary messages, provides support for send files: packet size, authorization,
QoS, message acknowledgement and more.

5. Protocol SGC: implemented using JSON-RPC 2.0 messages, provides the following patterns: RPC, PubSub,
Transactional Messages, Messages Acknowledgment and more.

6. Protocol Dataset: inherits from Default Protocol, can send dataset changes (new record, save record or delete
a record) from the server to clients.

7. Protocol Presence: allows to know who is subscribed to a channel, example: chat rooms, collaborators on a
document, people viewing the same web page, competitors in a game...

8. Protocol WAMP 1.0: open WebSocket subprotocol that provides two asynchronous messaging patterns: RPC
and PubSub.

9. Protocol WAMP 2.0: open WebSocket subprotocol that provides two asynchronous messaging patterns: RPC
and PubSub.

10. Protocol STOMP: STOMP is the Simple (or Streaming) Text Orientated Messaging Protocol. STOMP provides
an interoperable wire format so that STOMP clients can communicate with any STOMP message broker to provide
easy and widespread messaging interoperability among many languages, platforms and brokers.

10.1 STOMP for RabbitMQ: client for RabbitMQ Broker.

10.2 STOMP for ActiveMQ: client for ActiveMQ Broker.

11. Protocol AMQP: Advanced Message Queuing Protocol (AMQP 0.9.1) is created as an open standard protocol
that allows messaging interoperability between systems, regardless of message broker vendor or platform used.

12. Protocol AMQP1: Advanced Message Queuing Protocol (AMQP 1.0.0) is created as an open standard proto-
col that allows messaging interoperability between systems, regardless of message broker vendor or platform
used.

COMPONENTS

If you need to use more than one protocol using a single connection (example: you may need to use default
protocol to handle Remote Procedure Calls and Dataset protocol to handle database connections) you can as-
sign a "Broker" to each protocol component and all messages will be exchanged using this intermediary protocol
(you can check "Tickets Demo" to get a simple example of this).

Protocols can be registered at runtime, just call Method RegisterProtocol and pass protocol component as a pa-
rameter.

Javascript Reference

Here you can get more information about common javascript library used on sgcWebSockets.

COMPONENTS

Protocols Javascript

Default Javascript sgcWebSockets uses sgcWebSocket.js file.
Here you can find available methods, you need to replace {%host%} and {%port%} variables as needed, example:

if you have configured your sgcWebSocket server to listen port 80 on www.example.com website you need to con-
figure your access to sgcWebSocket.js file as:

<script src="http://www.example.com:80/sgcwWebSockets.js"></script>

Open Connection

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script>

var socket = new sgcWebSocket('ws://{%host%}:{%port%}');
</script>

sgcWebSocket has 3 parameters, only first is required:

sgcWebSocket (url, protocol, transport)

. URL: WebSocket server location, you can use "ws:" for normal WebSocket connections and "wss:" for
secured WebSocket connections.

sgcWebSocket ('ws://127.0.0.1")
sgcWebSocket ('wss://127.0.0.1")

. Protocol: if the server accepts one or more protocol, you can define which is the protocol you want to
use.

sgcWebSocket ('ws://127.0.0.1', 'esegece.com')

. Transport: by default, first tries to connect using WebSocket connection and if not implemented by
Browser, then tries Server Sent Events as Transport.

Use WebSocket if implemented, if not, then use Server Sent Events:
sgcWebSocket ('ws://127.0.0.1")
Only use WebSocket as transport:
sgcWebSocket ('ws://127.0.0.1"', '', ['websocket'])
Only use Server Sent as transport:

sgcWebSocket ('ws://127.0.0.1"', '', ['sse'])

Open Connection With Authentication

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script>

var socket = new sgcWebSocket({"host":"ws://{%host%}:{%port%}", "user":"admin", "password":"1234"});
</script>

COMPONENTS

Send Message

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script>
var socket = new sgcWebSocket('ws://{%host%}:{%port%}"');
socket.send('Hello sgcWebSockets!');
</script>

Show Alert with Message Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script>
var socket = new sgcWebSocket('ws://{%host%}:{%port%}');
socket.on('message', function(event)

alert(event.message);

}

</script>

Binary Message Received

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script>
var socket = new sgcWebSocket('ws://{%host%}:{%port%}"');
socket.on('stream', function(event)

{
document.getElementById('image').src = URL.createObjectURL(event.stream);
event.stream = "";
}
</script>

Binary (Header + Image) Message Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script>
var socket = new sgcWebSocket('ws://{%host%}:{%port%}');
socket.on('stream', function(event)

sgcwWSStreamRead(evt.stream, function(header, stream) {
document.getElementById('text').innerHTML = header;
document.getElementById('image').src = URL.createObjectURL(event.stream);
event.stream = "";

}

</script>

Show Alert OnConnect, OnDisconnect and OnError Events

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script>
var socket = new sgcWebSocket('ws://{%host%}:{%port%}');

COMPONENTS

socket.on('open', function(event)
alert('sgcwWebSocket Open!');

sécket.on('close', function(event)
alert('sgcWebSocket Closed!');

sécket.on('error', function(event)
alert('sgcwWebSocket Error: ' + event.message);

1

</script>

Close Connection

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script>

socket.close();
</script>

Get Connection Status

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script>

socket.state();
</script>

COMPONENTS

Protocol MQTT

MQTT is a Client-Server publish/subscribe messaging transport protocol. It is light weight, open, simple, and de-
signed so as to be easy to implement. These characteristics make it ideal for use in many situations, including con-
strained environments such as for communication in Machine to Machine (M2M) and the Internet of Things (loT)
contexts where a small code footprint is required and/or network bandwidth is at a premium.

The protocol runs over TCP/IP, or over other network protocols that provide ordered, lossless, bi-directional con-
nections. Its features include:

Use of the publish/subscribe message pattern which provides one-to-many message distribution and decou-
pling of applications.

A messaging transport that is agnostic to the content of the payload.

Three qualities of service for message delivery:

"At most once", where messages are delivered according to the best efforts of the operating environ-
ment. Message loss can occur. This level could be used, for example, with ambient sensor data where it
does not matter if an individual reading is lost as the next one will be published soon after.

"At least once", where messages are assured to arrive but duplicates can occur.

"Exactly once", where message are assured to arrive exactly once. This level could be used, for ex-
ample, with billing systems where duplicate or lost messages could lead to incorrect charges being applied.

A small transport overhead and protocol exchanges minimized to reduce network traffic.

A mechanism to notify interested parties when an abnormal disconnection occurs.

Features

» Supports 3.1.1 and 5.0 MQTT versions.

» Publish/subscribe message pattern to provide one-to-many message distribution and decoupling of appli-
cations.

+ Acknowledgment of messages sent.

+ Implements QoS (Quality of Service) for message delivery (all levels: At most once, At least once and Exact-
ly once)

» Last Will Testament.

» Secure connections.

* HeartBeat and Watchdog.

+ Authentication to server.

Components

TsgcWSPClient_MQTT: MQTT Client Component.

Most common uses

¢ Connection
* Client MQTT Connect
» Connect Mosquitto MQTT Servers
» Client MQTT Sessions
* Client MQTT Version

e Publish & Subscribe
e MQTT Publish Subscribe
* MQTT Topics
« MQTT Subscribe
* MQTT Publish Message

234

COMPONENTS

* MQTT Receive Messages
* MQTT Publish and Wait Response

e Other
*+ MQTT Clear Retained Messages

COMPONENTS

TsgcWSPClient MQTT

The MQTT component provides a lightweight, fully-featured MQTT client implementation with support for versions
3.1.1 and 5.0. The component supports plaintext and secure connections over both standard TCP and WebSock-
ets.

Connection to a MQTT server is simple, you need to drop this component in the form and select a TsgcWebSocket-
Client Component using Client Property. Set host and port in TsgcWebSocketClient and set Active := True to con-
nect.

MQTT v5.0 is not backward compatible (like v3.1.1). Obviously too many new things are introduced so existing im-
plementations have to be revisited.

According to the specification, MQTT v5.0 adds a significant number of new features to MQTT while keeping much
of the core in place.

* The Clean Session flag functionality is divided into 2 properties to allow for finer control over session state
data: the CleanStart parameter and the new SessionExplinterval.

» Server disconnect: Allow DISCONNECT to be sent by the Server to indicate the reason the connection is
closed.

+ All response packets (CONNACK, PUBACK, PUBREC, PUBREL, PUBCOMP, SUBACK, UNSUBACK, DIS-
CONNECT) now contain a reason code and reason string describing why operations succeeded or failed.

* Enhanced authentication: Provide a mechanism to enable challenge/response style authentication including
mutual authentication. This allows SASL style authentication to be used if supported by both Client and
Server, and includes the ability for a Client to re-authenticate within a connection.

» The Request / Response pattern is formalized by the addition of the ResponseTopic.

» Shared Subscriptions: Add shared subscription support allowing for load balanced consumers of a subscrip-
tion.

» Topic Aliases can be sent by both client and server to refer to topic filters by shorter numerical identifiers in
order to save bandwidth.

» Servers can communicate what features it supports in ConnectionProperties.

» Server reference: Allow the Server to specify an alternate Server to use on CONNACK or DISCONNECT.
This can be used as a redirect or to do provisioning.

+ More: message expiration, Receive Maximums and Maximum Packet Sizes, and a Will Delay interval are all
supported.

Methods

Connect: this method is called automatically after a successful WebSocket connection.

Ping: Sends a ping to the server, usually to keep the connection alive. If you enable HeartBeat property, ping will
be sent automatically by a defined interval.

Subscribe: subscribe client to a custom channel. If the client is subscribed, OnMQTTSubscribe event will be
fired.
SubscribeProperties: (New in MQTT 5.0)

. Subscriptionldentifier: MQTT 5 allows clients to specify a numeric subscription identifier which will
be returned with messages delivered for that subscription. To verify that a server supports subscrip-
tion identifiers, check the "SubscriptionldentifiersAvailable"

. UserProperties: This property is intended to provide a means of transferring application layer name-
value tags whose meaning and interpretation are known only by the application programs responsible
for sending and receiving them.

Example:

oProperties := TsgcWSMQTTSubscribe_Properties.Create;
Try

COMPONENTS

oProperties.SubscriptionIdentifier := 16385;
MQTT.Subscribe('myChannel', mtqsAtMostOnce, oProperties);

Finally

FreeAndNil(oProperties);

End;

Unsubscribe: unsubscribe client to a custom channel. If the client is unsubscribed, OnMQTTUnsubscribe event

will be fired.

UnsubscribeProperties: (New in MQTT 5.0)

UserProperties: This property is intended to provide a means of transferring application layer name-
value tags whose meaning and interpretation are known only by the application programs responsible
for sending and receiving them.

Example:

oProperties
Try

1= TsgcWSMQTTUnsubscribe_Properties.Create;

oProperties.UserProperties.Add('Temp=21");
oProperties.UserProperties.Add('Humidity=55");
MQTT.UnSubscribe('myChannel', mtgsAtMostOnce, oProperties);

Finally

FreeAndNil(oProperties);

End;

Publish: sends a message to all subscribed clients. There are the following parameters:
Topic: is the channel where the message will be published.
Text: is the text of the message.
QoS: is the Quality Of Service of published message. There are 3 possibilities:

mtgsAtMostOnce: (by default) the message is delivered according to the best efforts of the underly-
ing TCP/IP network. A response is not expected and no retry semantics are defined in the protocol.
The message arrives at the server either once or not at all.

mtqgsAtLeastOnce: the receipt of a message by the server is acknowledged by an ACKNOWLEDG-
MENT message. If there is an identified failure of either the communications link or the sending de-
vice or the acknowledgement message is not received after a specified period of time, the sender re-
sends the message. The message arrives at the server at least once. A message with QoS level 1
has an ID param in the message.

mtgsExactlyOnce: where message are assured to arrive exactly once. This level could be used, for
example, with billing systems where duplicate or lost messages could lead to incorrect charges being
applied. If there is an identified failure of either the communications link or the sending device, or the
acknowledgement message is not received after a specified period of time, the sender resends the
message.

Retain: if True, Server MUST store the Application Message and its QoS, so that it can be delivered to fu-
ture subscribers whose subscriptions match its topic name. By default is False.
PublishProperties: (New in MQTT 5.0)

PayloadFormat: select payload format from: mqpfUnspecified (which is equivalent to not sending a
Payload Format Indicator) or mqpfUTF8 (Message s UTF-8 Encoded Character Data).
MessageExpirylnterval: Length of time after which the server must stop delivery of the publish mes-
sage to a subscriber if not yet processed.

TopicAlias: is an integer value that is used to identify the Topic instead of using the Topic Name. This
reduces the size of the PUBLISH packet, and is useful when the Topic Names are long and the same
Topic Names are used repetitively within a Network Connection.

ResponseTopic: is used as the Topic Name for a response message.

CorrelationData: The Correlation Data is used by the sender of the Request Message to identify
which request the Response Message is for when it is received.

UserProperties: This property is intended to provide a means of transferring application layer name-
value tags whose meaning and interpretation are known only by the application programs responsible
for sending and receiving them.

Subscriptionldentifier: A numeric subscription identifier included in SUBSCRIBE packet which will
be returned with messages delivered for that subscription.

ContentType: String describing content of message to be sent to all subscribers receiving the mes-
sage.

237

COMPONENTS

PublishAndWait: is the same method than Publish, but in this case, if QoS is [mtgsAtLeastOnce, mtgsExactly-
Once] waits till server processes the message, this way, if you get a positive result, means that message has been
received by server. There is a timeout of 10 seconds by default, if after the timeout there is no response from serv-
er, the response will be false.

Disconnect: disconnects from MQTT server.
ReasonCode: code identifies reason why disconnects.(New in MQTT 5.0)
DisconnectProperties (New in MQTT 5.0)

. SessionExpirylnterval: Session Expiry Interval in seconds.

. ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.

. UserProperties: provide additional information to the Client including diagnostic information.

. ServerReference: can be used by the Client to identify another Server to use.

Auth: is sent from Client to Server or Server to Client as part of an extended authentication exchange, such as
challenge / response authentication. (New in MQTT 5.0)
ReAuthenticate: if True Initiate a re-authentication, otherwise continue the authentication with another step.

AuthProperties
. AuthenticationMethod: contains the name of the authentication method.
. AuthenticationData: contains authentication data.
. ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
. UserProperties: provide additional information to the Client including diagnostic information.
Events

OnMQTTBeforeConnect: this event is fired before a new connection is established. There are 2 parameters:
CleanSession: if True (by default), the server must discard any previous session and start a new session. If
false, the server must resume communication.

Clientldentifier: every new connection needs a client identifier, this is set automatically by component, but
can be modified if needed.

OnMQTTConnect: this event is fired when the client is connected to MQTT server. There are 2 parameters:

Session:
1. If client sends a connection with CleanSession = True, then Server Must respond with Session =
False.
2. If client sends a connection with CleanSession = False:
. If the Server has stored Session state, Session = True.
. If the Server does not have stored Session state, Session = False

ReasonCode: returns code with the result of connection.(New in MQTT 5.0)
ReasonName: text description of ReturnCode.(New in MQTT 5.0)
ConnectProperties: (New in MQTT 5.0)

. SessionExpirylnterval: Session Expiry Interval in seconds.

. ReceiveMaximum: number of QoS 1 and QoS 2 publish messages, the server will process concur-
rently for the client.

MaximumQoS: maximum accepted QoS of PUBLISH messages to be received by the server.
RetainAvailable: indicates whether the client may send PUBLISH packets with Retain set to True.
MaximumPacketSize: maximum packet size in bytes the server is willing to accept.
AssignedClientldentifier: the Client Identifier which was assigned by the Server when client didn't

send any.

. TopicAliasMaximum: indicates the hishest value that the server will accept as a Topic Alias sent by
the client.

. ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.

. UserProperties: provide additional information to the Client including diagnostic information.

COMPONENTS

. WildcardSubscriptionAvailable: indicates whether the server supports wildcard subscriptions.

. SubscriptionldentifiersAvailable: indicates whether the server supports subscription identifiers.
SharedSubscriptionAvailable: indicates whether the server supports shared subscriptions.
Responselnformation: used as the basis for creating a Response Topic.

ServerReference: can be used by the Client to identify another Server to use.
AuthenticationMethod: identifier of the Authentication Method.

AuthenticationData: string containing authentication data.

OnQTTDisconnect: this event is fired when the client is disconnected from MQTT server. Parameters:
ReasonCode: returns code with the result of connection.(New in MQTT 5.0)
ReasonName: text description of ReturnCode.(New in MQTT 5.0)
DisconnectProperties: (New in MQTT 5.0)

. SessionExpirylnterval: Session Expiry Interval in seconds.

. ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.

. UserProperties: provide additional information to the Client including diagnostic information.

. ServerReference: can be used by the Client to identify another Server to use.

OnMQTTPing: this event is fired when the client receives an acknowledgment from a ping previously sent.

OnMQTTPubACck: this event is fired when receives the response to a Publish Packet with QoS level 1. There is
one parameter:
Packetldentifier: is packet identifier sent initially.
ReasonCode: returns code with the result of connection.(New in MQTT 5.0)
ReasonName: text description of ReturnCode.(New in MQTT 5.0)
PubAckProperties: (New in MQTT 5.0)

. ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
. UserProperties: provide additional information to the Client including diagnostic information.

OnMQTTPubComp: this event is fired when receives the response to a PubRel Packet. It is the fourth and final
packet of the QoS 2 protocol exchange. There are the following parameters:
Packetldentifier: is packet identifier sent initially.
ReasonCode: returns code with the result of connection.(New in MQTT 5.0)
ReasonName: text description of ReturnCode.(New in MQTT 5.0)
PubCompProperties: (New in MQTT 5.0)

. ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
. UserProperties: provide additional information to the Client including diagnostic information.

OnMQTTPublish: this event is fired when the client receives a message from the server. There are 2 parameters:
Topic: is the topic name of the published message.
Text: is the text of the published message.
PublishProperties: (New in MQTT 5.0)

. PayloadFormat: select payload format from: mqpfUnspecified (which is equivalent to not sending a
Payload Format Indicator) or mqpfUTF8 (Message s UTF-8 Encoded Character Data).

. MessageExpirylInterval: Length of time after which the server must stop delivery of the publish mes-
sage to a subscriber if not yet processed.

. TopicAlias: is an integer value that is used to identify the Topic instead of using the Topic Name. This

reduces the size of the PUBLISH packet, and is useful when the Topic Names are long and the same
Topic Names are used repetitively within a Network Connection.

. ResponseTopic: is used as the Topic Name for a response message.

. CorrelationData: The Correlation Data is used by the sender of the Request Message to identify
which request the Response Message is for when it is received.

. UserProperties: This property is intended to provide a means of transferring application layer name-

value tags whose meaning and interpretation are known only by the application programs responsible
for sending and receiving them.

. Subscriptionldentifier: A numeric subscription identifier included in SUBSCRIBE packet which will
be returned with messages delivered for that subscription.

. ContentType: String describing content of message to be sent to all subscribers receiving the mes-
sage.

COMPONENTS

OnMQTTPubRec: this event is fired when receives the response to a Publish Packet with QoS 2. It is the second
packet of the QoS 2 protocol exchange. There are the following parameters:

Packetldentifier: is packet identifier sent initially.

ReasonCode: returns code with the result of connection.(New in MQTT 5.0)
ReasonName: text description of ReturnCode.(New in MQTT 5.0)
PubRecProperties: (New in MQTT 5.0)

ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
UserProperties: provide additional information to the Client including diagnostic information.

OnMQTTSubscribe: this event is fired as a response to subscribe method. There are the following parameters:

Packetldentifier: is packet identifier sent initially.
Codes: codes with the result of a subscription.
SubscribeProperties: (New in MQTT 5.0)

ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
UserProperties: provide additional information to the Client about subscription.

OnMQTTUnSubscribe: this event is fired as a response to subscribe method. There are the following parame-

ters:

Packetldentifier: is packet identifier sent initially.
Codes: codes with the result of a subscription.
UnsubscribeProperties: (New in MQTT 5.0)

UserProperties: provide additional information to the Client about subscription.

OnMQTTAuth: this event is fired as a response to Auth method. There is one parameter: (New in MQTT 5.0)

ReasonCode: returns code with the result of connection.
ReasonName: text description of ReturnCode.
AuthProperties:

AuthenticationMethod: contains the name of the authentication method used for extended authenti-
cation.

AuthenticationData: data associated to authentication.

ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.

UserProperties: provide additional information to the Client including diagnostic information.

Enhanced Authentication (New in MQTT 5.0)

To begin an enhanced authentication, the Client includes an Authentication Method in the ConnectProperties. This
specifies the authentication method to use. If the Server does not support the Authentication Method supplied by
the Client, it may send a Reason Code "Bad authentication method" or Not Authorized.

Example:

Client to Server: CONNECT Authentication Method="SCRAM-SHA-1" Authentication Data=client-first-data
Server to Client: AUTH ReasonCode="Continue authentication" Authentication Method="SCRAM-SHA-1"
Authentication Data=server-first-data

Client to Server AUTH ReasonCode="Continue authentication" Authentication Method="SCRAM-SHA-1" Au-
thentication Data=client-final-data

Server to Client CONNACK ReasonCode=0 Authentication Method="SCRAM-SHA-1" Authentication
Data=server-final-data

Properties

MQTTVersion: select which MQTT version (3.1.1 or 5.0) will use to connect to server.

COMPONENTS

Authentication: disabled by default, if True a UserName and Password are sent to the server to try user authen-
tication.

HeartBeat: enabled by default, if True, send a ping every X seconds (set by Interval property) to keep alive con-
nection. You can set a Timeout too, so if after X seconds, the client doesn't receive a response to a ping, the con-
nection will be closed automatically.

LastWillTestament: if there is a disconnection and is enabled, a message is sent to all connected clients to in-
form that connection has been closed.

+ Enabled: enable if you want activate last will testament.
» Text: is the message that the server will publish in the event of an ungraceful disconnection.
» Topic: is the topic that the server will publish the message to in the event of an ungraceful disconnection. Is
mandatory if LastWillTestament is enabled.
» Retain: enable if server must retain message after publish it.
» WillProperties: (New in MQTT 5.0)
» WillDelayInterval: The Server delays publishing the Client’s Will Message until the Will Delay Interval
has passed or the Session ends, whichever happens first.
+ PayloadFormat: select payload format from: mqpfUnspecified (which is equivalent to not sending a
Payload Format Indicator) or mqpfUTF8 (Message s UTF-8 Encoded Character Data).
+ MessageExpirylnterval: Length of time after which the server must stop delivery of the will message
to a subscriber if not yet processed.
» ContentType: string describing content of will message.
* ResponseTopic: Used as a topic name for a response message.
» CorrelationData: binary string used by client to identify which request the response message is for
when received.
» UserProperties: can be used to send will related properties from the Client to the Server. The mean-
ing of these properties is not defined by MQTT specification.

ConnectProperties: (New in MQTT 5.0) are connection properties sent with packet connect.

» Enabled: if True, connect properties will be sent to server.

» SessionExpiryinterval: if value is zero, session will end when network connection is closed.

* ReceiveMaximum: the Client uses this value to limit the number of QoS 1 and QoS 2 publications that it is
willing to process concurrently.

+ MaximumPacketSize: the Client uses the Maximum Packet Size to inform the Server that it will not process
packets exceeding this limit.

» TopicAliasMaximum: the Client uses this value to limit the number of Topic Aliases that it is willing to hold
on this Connection.

+ RequestResponselnformation: the Client uses this value to request the Server to return Response Infor-
mation in the CONNACK. If False indicates that the Server MUST NOT return Response Information, If True
the Server MAY return Response Information in the CONNACK packet.

* RequestProbleminformation: the Client uses this value to indicate whether the Reason String or User
Properties are sent in the case of failures. If the value of Request Problem Information is False, the Server
MAY return a Reason String or User Properties on a CONNACK or DISCONNECT packet but MUST NOT
send a Reason String or User Properties on any packet other than PUBLISH, CONNACK, or DISCONNECT.

» UserProperties: can be used to send connection related properties from the Client to the Server. The
meaning of these properties is not defined by MQTT specification.

» AuthenticationMethod: contains the name of the authentication method used for extended authentication.

COMPONENTS

TsgcWSPClient_ MQTT | Client MQTT Con-
nect

In order to connect to a MQTT Server, you must create first a TsgcWebSocketClient and a TsgcWSPClient_ MQTT.
Then you must attach MQTT Component to WebSocket Client.

Basic Usage

Connect to Mosquitto MQTT server using websocket protocol. Subscribe to topic: "topic1" after connect.

oClient := TsgcWebSocketClient.Create(nil);
oClient.Host := 'test.mosquitto.org';
oClient.Port := 8080;

OMQTT := TsgcWSPClient_MQTT.Create(nil);
OMQTT.Client := oClient;

oClient.Active := True;

procedure 0OnMQTTConnect(Connection: TsgcWSConnection; const Session: Boolean; const ReasonCode: Integer;
const ReasonName: string; const ConnectProperties: TsgcWSMQTTCONNACKProperties);

begin
OMQTT.Subscribe('topicl');

end;

Client Identifier

MQTT requires a Client Identifier to identify client connection. Component sets a random value automatically but
you can set your own Client Identifier if required, to do this, just handle OnBeforeConnect event and set your val-
ue on aClientldentifier parameter.

procedure OnMQTTBeforeConnect(Connection: TsgcWSConnection; var aCleanSession: Boolean;
var aClientIdentifier: string);

begin
aClientIdentifier := 'your client id';

end;

Authentication

Somes servers require an user and password to authorize MQTT connections. Use Authentication property to
set the value for username and password before connect to server.

OMQTT := TsgcWSPClient_MQTT.Create(nil);
OMQTT.Authentication.Enabled := True;
OMQTT.Authentication.UserName := 'your user';

= 'your password';

OMQTT.Authentication.Password :

COMPONENTS

TsgcWSPClient_ MQTT | Connect MQTT

Mosquitto

Use the following sample configurations to connect to a Mosquitto MQTT Server.

MOSQUITTO MQTT WebSockets

oClient := TsgcWebSocketClient.Create(nil);
oClient.Host := 'test.mosquitto.org';
oClient.Port := 8080;

OMQTT := TsgcWSPClient_MQTT.Create(nil);
OMQTT.Client := oClient;

oClient.Active := True;

MOSQUITTO MQTT WebSockets TLS

oClient := TsgcWebSocketClient.Create(nil);
oClient.Host := 'test.mosquitto.org';
oClient.Port := 8081;

oClient.TLS := True;
oClient.TLSOptions.Version := tlsl_2;

OMQTT := TsgcWSPClient_MQTT.Create(nil);
OMQTT.Client := oClient;

oClient.Active := True;

MOSQUITTO MQTT Plain TCP

oClient := TsgcWebSocketClient.Create(nil);
oClient.Host := 'test.mosquitto.org';
oClient.Port := 1883;
oClient.Specifications.RFC6455 := False;
OMQTT := TsgcWSPClient_MQTT.Create(nil);
OoMQTT.Client := oClient;

oClient.Active := True;

MOSQUITTO MQTT Plain TCP TLS

oClient := TsgcWebSocketClient.Create(nil);
oClient.Host := 'test.mosquitto.org';
oClient.Port := 8083;
oClient.Specifications.RFC6455 := False;
oClient.TLS := True;
oClient.TLSOptions.Version := tlsl_2;

OMQTT := TsgcWSPClient_MQTT.Create(nil);
OoMQTT.Client := oClient;

oClient.Active := True;

COMPONENTS

TsgcWSPClient_ MQTT | Client MQTT Ses-
sions

Clean Start

OnMQTTBeforeConnect event, there is a parameter called aCleanSession. If the value of this parameter is True,
means that client want start a new session, so if server has any session stored, it must discard it. So, when On-
MQTTConnect event is fired, aSession parameter will be false. If the value of this parameter is False and there is a
session associated to this client identifier, the server must resume communications with the client on state with the
existing session.

So, if client has an unexpected disconnection, and you want to recover the session where was disconnected, in
OnMQTTBeforeConnect set aCleanSession = True and aClientldentifier = Client ID of Session.

Session

Once successful connection, check OnMQTTConnect event, the value of Session parameter.

Session = true, means session has been resumed.
Session = false, means it's a new session.

procedure TfrmwWebSocketClient.MQTTMQTTBeforeConnect(Connection: TsgcWSConnection;
var aCleanSession: Boolean; var aClientIdentifier: string);

begin

aCleanSession := false;

aClientIdentifier := 'previous client id';
end;

procedure OnMQTTConnect(Connection: TsgcWSConnection; const Session: Boolean;
const ReasonCode: Integer; const ReasonName: string; const ConnectProperties: TsgcWSMQTTCONNACKProperties);
begin
if Session then
WriteLn('Session resumed')
else
WriteLn('New Session');
end;

244

COMPONENTS

TsgcWSPClient_ MQTT | Client MQTT Ver-
sion

Currently, MQTT Client supports the following specifications:

. MQTT 3.1.1: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-0s.html
. MQTT 5.0: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

You can select which is the version which will use the MQTT Client component using MQTTVersion property.

MQTT 3.1.1: TsgcWSPClient_ MQTT.Version = mqtt311
MQTT 5.0: sgcWSPClient MQTT.Version = mqtt5

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

COMPONENTS

TsgcWSPClient MQTT | MQTT Publish Sub-
scribe

The publish/subscribe pattern (also known as pub/sub) provides an alternative to traditional client-server architec-
ture. In the client-sever model, a client communicates directly with an endpoint.The pub/sub model decouples the
client that sends a message (the publisher) from the client or clients that receive the messages (the sub-
scribers). The publishers and subscribers never contact each other directly. In fact, they are not even aware that
the other exists. The connection between them is handled by a third component (the broker). The job of the
broker is to filter all incoming messages and distribute them correctly to subscribers.

With TsgcWSPClient_MQTT you can Publish messages and Subscribe to Topics.

Subscribe Topic

Subscribe to Topic "topic1" after a successful connection.

oClient := TsgcWebSocketClient.Create(nil);
oClient.Host := 'test.mosquitto.org';
oClient.Port := 8080;

OMQTT := TsgcWSPClient_MQTT.Create(nil);
OoMQTT.Client := oClient;

oClient.Active := True;

procedure OnMQTTConnect(Connection: TsgcWSConnection; const Session: Boolean; const ReasonCode: Integer;
const ReasonName: string; const ConnectProperties: TsgcWSMQTTCONNACKProperties);

begin
OMQTT.Subscribe('topic1');

end;

Publish Message

Publish a message to all subscribers of "topic1"

oClient := TsgcWebSocketClient.Create(nil);
oClient.Host := 'test.mosquitto.org';
oClient.Port := 8080;

OMQTT := TsgcWSPClient_MQTT.Create(nil);
oMQTT.Client := oClient;

oClient.Active := True;

procedure OnMQTTConnect(Connection: TsgcWSConnection; const Session: Boolean; const ReasonCode: Integer;
const ReasonName: string; const ConnectProperties: TsgcWSMQTTCONNACKProperties);

begin
OMQTT.Publish('topicl', 'Hello Subscribers topicl');

end;

COMPONENTS

TsgcWSPClient_MQTT | MQTT Topics

Topics

In MQTT, the word topic refers to an UTF-8 string that the broker uses to filter messages for each connected client.
The topic consists of one or more topic levels. Each topic level is separated by a forward slash (topic level separa-
tor)

myHome / groundfloor / livingroom / temperature

In comparison to a message queue, MQTT topics are very lightweight. The client does not need to create the de-
sired topic before they publish or subscribe to it. The broker accepts each valid topic without any prior initialization.
Note that each topic must contain at least 1 character and that the topic string permits empty spaces. Topics are
case-sensitive.

WildCards

When a client subscribes to a topic, it can subscribe to the exact topic of a published message or it can use wild-
cards to subscribe to multiple topics simultaneously. A wildcard can only be used to subscribe to topics, not to pub-
lish a message. There are two different kinds of wildcards: _single-level and _multi-level.

Single Level: +

As the name suggests, a single-level wildcard replaces one topic level. The plus symbol represents a single-level
wildcard in a topic.

myHome / groundfloor / + / temperature

Any topic matches a topic with single-level wildcard if it contains an arbitrary string instead of the wildcard. For ex-
ample a subscription to _myhome/groundfloor/+/temperature can produce the following results:

YES => myHome / groundfloor / livingroom / temperature
YES => myHome / groundfloor / kitchen / temperature

NO =>myHome / groundfloor / livingroom / brightness

NO => myHome / firstfloor / livingroom / temperature

NO => myHome / groundfloor / kitchen / fridge / temperature

Multi Level: #

The multi-level wildcard covers many topic levels. The hash symbol represents the multi-level wild card in the topic.
For the broker to determine which topics match, the multi-level wildcard must be placed as the last character in the
topic and preceded by a forward slash.

myHome / groundfloor / #

YES => myHome / groundfloor / livingroom / temperature
YES => myHome / groundfloor / kitchen / temperature
YES => myHome / groundfloor / kitchen / brightness

NO => myHome / firstfloor / kitchen / temperature

When a client subscribes to a topic with a multi-level wildcard, it receives all messages of a topic that begins with
the pattern before the wildcard character, no matter how long or deep the topic is. If you specify only the multi-level
wildcard as a topic (_#), you receive all messages that are sent to the MQTT broker.

247

COMPONENTS

TsgcWSPClient MQTT | MQTT Subscribe

You can Subscribe to a Topic using method Subscribe from TsgcWSPClient. MQTT. This method has the following
parameters:

Topic: is the name of the topic to be subscribed.

QoS: one of the 3 QoS levels (not all brokers support all 3 levels). If not specificed uses mtgsAtMostOnce.
Read more about QoS Levels.

SubscribeProperties: if MQTT 5.0, are additional properties about subscriptions.

Subscribe QoS = At Least Once

MQTT.Subscribe('topicl', mtgsAtLeastOnce);

Subscribe MQTT 5.0

oProperties := TsgcWSMQTTSubscribe_Properties.Create;
oProperties.SubscriptionIdentifier := 1234;
oProperties.UserProperties.Add('name=value');

MQTT.Subscribe('topicl', mtgsAtMostOnce, oProperties);

COMPONENTS

TsgcWSPClient MQTT | MQTT Publish Mes-
sage

You can publish messages to all subscribers of a Topic using Publish method, which has the following parameters:
Topic: is the name of the topic where the message will be published.

Text: is the text of the message.

QoS: one of the 3 QoS levels (not all brokers support all 3 levels). If not specificed uses mtgsAtMostOnce.
Read more about QoS Levels.

Retain: if true, this message will be retained. And every time a new client subscribes to this topic, this mes-
sage will be sent to this client.
PublishProperties: if MQTT 5.0, these are the properties of the message.

Publish a simple message

MQTT.Publish('topicl', 'Hello Subscribers topicl');

Publish QoS = At Least Once

MQTT.Publish('topicl', 'Hello Subscribers topicl', mtqgsAtLeastOnce);

Publish Retained message

MQTT.Publish('topicl', 'Hello Subscribers topicl', mtqsAtMostOnce, true);

COMPONENTS

TsgcWSPClient MQTT | MQTT Receive Mes-
sages

Messages sent by server, are received OnMQTTPublish event. This event has the following parameters:
Topic: is the name of the topic associated to this message.

Text: is the text of the message.
PublishProperties: if MQTT 5.0, these are the properties of the published message.

Read published Messages

procedure OnMQTTPublish(Connection: TsgcWSConnection; aTopic, aText: string;
PublishProperties: TsgcWSMQTTPublishProperties);

begin
WriteLn('Topic: ' + aTopic + '. Message: ' + aText);

end;

COMPONENTS

TsgcWSPClient_MQTT | Publish and Wait
Response

MQTT client allows the use of some type of QoS levels, any of those levels works in a different level to be sure that
messages have been processed as expected.

There are the following QoS levels:

. mtgsAtMostOnce: (by default) the message is delivered according to the best efforts of the un-
derlying TCP/IP network. A response is not expected and no retry semantics are defined in the
protocol. The message arrives at the server either once or not at all.

. mtgsAtLeastOnce: the receipt of a message by the server is acknowledged by an ACKNOWL-
EDGMENT message. If there is an identified failure of either the communications link or the send-
ing device or the acknowledgement message is not received after a specified period of time, the
sender resends the message. The message arrives at the server at least once. A message with
QoS level 1 has an ID param in the message.

. mtgsExactlyOnce: where message are assured to arrive exactly once. This level could be used,
for example, with billing systems where duplicate or lost messages could lead to incorrect charges
being applied. If there is an identified failure of either the communications link or the sending de-
vice, or the acknowledgement message is not received after a specified period of time, the sender
resends the message.

You can handle the events OnPubAck or OnPubComp to know if message has been processed by server or you
can use the method PublishAndWait to know if the message has been processed by the server.

The use of PublishAndWait is the same that normal Publish method, now you have a new parameter called Time-
out, where method will return with value false if after certain period of time, there is no response from server. By de-
fault this value is 10 seconds.

if mqtt.PublishAndwait('topic', 'text') then
ShowMessage('Message processed')

else
ShowMessage('Message error');

COMPONENTS

TsgcWSPClient MQTT | MQTT Clear Re-
tained Messages

By default, every MQTT topic can have a retained message. The standard MQTT mechanism to clean up retained
messages is sending a retained message with an empty payload to a topic. This will remove the retained message.

MQTT.Publish('topicl', '', mtqsAtMostOnce, true);

COMPONENTS

Protocol AMQP 0.9.1

The Advanced Message Queuing Protocol (AMQP) is an open standard application layer protocol for message-
oriented middleware. The defining features of AMQP are message orientation, queuing, routing (including point-to-
point and publish-and-subscribe), reliability and security.

AMQP is a binary, application layer protocol, designed to efficiently support a wide variety of messaging applica-
tions and communication patterns. It provides flow controlled, message-oriented communication with message-de-
livery guarantees such as at-most-once (where each message is delivered once or never), at-least-once (where
each message is certain to be delivered, but may do so multiple times) and exactly-once (where the message will
always certainly arrive and do so only once), and authentication and/or encryption based on SASL and/or TLS. It
assumes an underlying reliable transport layer protocol such as Transmission Control Protocol (TCP).

Features

AMQP can be used in any situation if there is a need for high-quality and secure message delivery between client
and broker.

AMQP provides the following features:

» Monitoring and sharing updates.

» Ensuring quick response of the server to requests and transmission of time-consuming tasks for further pro-
cessing.

Distribute messages to multiple recipients.

Connection offline clients for further data retrieval.

Increase the reliability and smooth operation of applications.

Reliability of message delivery.

High speed message delivery.

Message Acceptance.

Components

TsgcWSPClient_ AMQP: it's the client component that implements AMQP 0.9.1 protocol.

Most common uses

* Connection
» Client AMQP Connect
+ Client AMQP Disconnect
» Commands
+ AMQP Channels
+ AMQP Exchanges
+ AMQP Queues
* AMQP Publish Messages
+ AMQP Consume Messages (Asynchronous)
+ AMQP Get Messages (Synchronous)
+ AMQP QoS
» AMQP Transactions

COMPONENTS

TsgcWSPClient AMQP

The TsgcWSClient_AMQP client implements the full AMQP 0.9.6 protocol following the OASIS specification. The
client supports Plain TCP and WebSocket connections, TLS (secure) connections are supported too.

Connection

AMQP 0.9.6 protocols defines the concept of channels, which allows to share a single socket connection with sev-
eral virtual channels, the client implements an internal thread which reads the bytes received and dispatch every
message to the correct channel (which already runs in his own thread), so, if you are running an AMQP connection
with 5 channels, the client will run 6 threads (5 threads which handle the data of every channel and 1 thread which
handles the data of the connection).

Before connect to an AMQP server, configure the following properties of the AMQP protocol

+ AMQPOptions.Locale: it's the message locale to use, it's a negotiated value, so can change when com-
pared with the supported locales supported by the server. The default value is "en_US".

+ AMQPOptions.MaxChannels: it's the maximum number of channels which can be opened, it's a negotiated
value, so can change when compared with the server configuration. The default value is 65535.

+ AMQPOptions.MaxFrameSize: it's the maximum size in bytes of the AMQP frame, it's a negotiated value,
so can change when compared with the server configuration. The default value is 2147483647 .

+ AMQPOptions.VirtualHost: it's the name of the virtual host. The default value is "/".

The AMQP HeartBeat can be configured too before connect to server, you can enable or disable the use of heart-
beats.

+ HeartBeat.Enabled: set to true if the client supports HeartBeats.
* HeartBeat.Interval: the desired interval in seconds.

Once the AMQP client has been configured, attach to a TsgcWebSocketClient and now you can configure the serv-
er connection properties to connect to the AMQP Server.

Set the property value Specifications.RFC6455 to false if using Plain TCP connection instead of WebSocket con-
nection.

O0AMQP := TsgcWSPClient_AMQP.Create(nil);
O0AMQP.AMQPOptions.Locale := 'en_US';
0AMQP .AMQPOptions.MaxChannels := 100;
OAMQP .AMQPOptions.MaxFrameSize := 16384;
0AMQP.AMQPOptions.VirtualHost := '/';
0AMQP.HeartBeat.Enabled := true;
O0AMQP.HeartBeat.Interval := 60;

oClient := TsgcWebSocketClient.Create(nil);
0AMQP.Client := oClient;
oClient.Specifications.RFC6455 := false;

oClient.Host := 'www.esegece.com';
oClient.Port := 5672;
oClient.Active := True;
Channels

Once the AMQP client has connected, it can open the first channel.

0AMQP.OpenChannel('channel_name');

254

COMPONENTS

Exchanges

When a Channel is opened, the client can declare new exchanges, verify than exists... use the method DeclareEx-
change to declare a new exchange.

0AMQP.DeclareExchange('channel_name', 'exchange_name');

Queues

When a Channel is opened, the client can declare new queues, verify than exists... use the method DeclareQueue
to declare a new Queue. The queues are not provided by default by the server (unlike the exchanges), so it's al-
ways required to declare a new queue (unless a queue has been already created by another client).

0AMQP.DeclareQueue('channel_name', 'queue_name');

Binding Queues

Once the Exchanges and Queues are configured, you may need to bind queues to exchanges, this way the ex-
changes can know which messages will be dispatched to the queues.

AMQP Servers automatically bind the queues to "direct" exchange using the queue name as routing key. This al-
lows to send a message to a specific queue without the need to declare a binding (just calling PublishMessage

method and pasing the Exchange argument as empty value and the name of the queue in the RoutingKey argu-
ment).

0AMQP.BindQueue('channel_name', 'queue_name', 'exchange_name', 'routing_key');

Send Messages

Call the method PublishMessage to publish a new AMQP message. The method allows to publish a String or
TStream message.

0AMQP.PublishMessage('channel_name', 'exchange_name', 'routing_key', 'Hello from sgcwWebSockets!!!");

Receive Messages

AMQP allows to receive the messages in 2 modes:

* Request by Client: using the GetMessage method. If there aren't messages in the queue, the event On-
AMQPBasicGetEmpty will be called.
* Pushed by Server: using the Consume method.

Request By Client

0AMQP.GetMessage('channel_name', 'queue_name');

procedure OnAMQPGetOk(Sender: TObject; const aChannel: string;

const aGetOk: TsgcAMQPFramePayload_Method_BasicGetOk; const aContent: TsgcAMQPMessageContent)
begin

DoLog('#AMQP_basic_GetOk: ' + aChannel + ' ' + IntToStr(aGetOk.MessageCount) + ' ' + aContent.Body.AsString);
end;

Pushed By Server

COMPONENTS

O0AMQP.Consume('channel_name', 'queue_name');

procedure OnAMQPGetOk(Sender: TObject; const aChannel, aConsumerTag: string)
begin

DoLog('#AMQP_basic_GetOk: ' + aChannel + ' ' + IntToStr(aGetOk.MessageCount) + ' ' + aContent.Body.AsString);
end;

COMPONENTS

Connection | Client AMQP Connect

In order to connect to a AMQP Server, you must create first a TsgcWebSocketClient and a TsgcWSPClient_ AMQP.
Then you must attach AMQP Component to WebSocket Client.

Basic Usage

Connect to AMQP server without authentication. Define the AMQPOptions property values, virtual host and then
set in the TsgcWebSocketClient the Host and Port of the server.
If you are using a TCP Plain connection, set the TsgcWebSocketClient property Specifications.RFC6455 to false.

0AMQP := TsgcWSPClient_AMQP.Create(nil);
O0AMQP.AMQPOptions.Locale := 'en_US';
0AMQP .AMQPOptions.MaxChannels := 100;
OAMQP .AMQPOptions.MaxFrameSize := 16384;
0AMQP .AMQPOptions.VirtualHost := '/';
0AMQP.HeartBeat.Enabled := true;
O0AMQP.HeartBeat.Interval := 60;

oClient := TsgcWebSocketClient.Create(nil);
0AMQP.Client := oClient;
oClient.Specifications.RFC6455 := false;
oClient.Host := 'www.esegece.com';
oClient.Port := 5672;

oClient.Active := True;

Authentication

If the server requires authentication, use the event OnAMQPAuthentication to select the Authentication mecha-
nism (if required) and set the User / Password.

OAMQP := TsgcWSPClient_AMQP.Create(nil);
0AMQP.AMQPOptions.Locale := 'en_US';
O0AMQP .AMQPOptions.MaxChannels := 100;
0AMQP .AMQPOptions.MaxFrameSize := 16384;
0AMQP.AMQPOptions.VirtualHost := '/';
0AMQP .HeartBeat.Enabled := true;
0AMQP.HeartBeat.Interval := 60;

oClient := TsgcWebSocketClient.Create(nil);
0AMQP.Client := oClient;
oClient.Specifications.RFC6455 := false;

oClient.Host := 'www.esegece.com';
oClient.Port := 5672;
oClient.Active := True;

procedure OnAMQPAuthentication(Sender: TObject; aMechanisms: TsgcAMQPAuthentications; var Mechanism: TsgcAMQPAutt
var User, Password: string);

begin
User := 'user_value';
Password := 'password_value';
end;

257

COMPONENTS

Connection | Client AMQP Disconnect

The client can disconnect a current active connection, using the following methods:

Sending a Close Reason

The AMQP client can inform the server that the connection will be closed and provide information about the reason
why is closing the connection. Use the method Close to request a connection close to the server.

OAMQP.Close(541, 'Internal Error');

Closing Socket Connection

Just set the property Active of TsgcWebSocketClient to False. You can read more about closing connections.

COMPONENTS

Commands | AMQP Channels

AMQP is a multi-channelled protocol. Channels provide a way to multiplex a heavyweight TCP/IP connection into
several light weight connections. This makes the protocol more “firewall friendly” since port usage is predictable. It
also means that traffic shaping and other network QoS features can be easily employed.

Every channel run in his own thread, so every time a new message is received, first the client identifies the channel
and queues the message in a queue which is process by the thread channel.

The channel life-cycle is this:

1. The client opens a new channel (Open).

2. The server confirms that the new channel is ready (Open-Ok).
3. The client and server use the channel as desired.

4. One peer (client or server) closes the channel (Close).

5. The other peer hand-shakes the channel close (Close-Ok).

Open Channel

To create a new channel just call the method OpenChannel and pass the channel name as argument. The event
OnAMQPChannelOpen is raised as a confirmation sent by the server that the channel has been opened.

AMQP.OpenChannel('channel_name');

procedure OnAMQPChannelOpen(Sender: TObject; const aChannel: string);
begin

DoLog('#AMQP_channel_open: ' + aChannel);
end;

A Synchronous call can be done too calling the method OpenChannelEXx, this method returns true if the channel
has been opened and false if no confirmation from server has arrived.

if AMQP.OpenChannelEx('channel_name') then
DoLog('#AMQP_channel_open: channel_name');
else
DoLog('#AMQP_Channel_open_error');

Close Channel

To close an existing channel, call the method CloseChannel and pass the channel name as argument. The event
OnAMQPChannelClose will be called when the client receives a confirmation that the channel has been closed.

A Synchronous call can be done calling the method CloseChannelEx, this method returns true if the channel has
been closed and false if no confirmation from server has arrived.

Channel Flow

Flow control is an emergency procedure used to halt the flow of messages from a peer. It works in the same way
between client and server and is implemented by the EnableChannel / DisableChannel commands. Flow control
is the only mechanism that can stop an over-producing publisher.

To Disable the Flow of a channel, call the method DisableChannel, the event OnAMQPChannelFlow will be
called when the client receives a confirmation that the channel flow has been disabled.

COMPONENTS

The same applies when enabling the flow of a channel, call the method EnableChannel, the event On-
AMQPChannelFlow will be called when the client receives a confirmation that the channel flow has been enabled.

Synchronous requests are available through the functions EnableChannelEx and DisableChannelEx.

COMPONENTS

Commands | AMQP Exchanges

The exchange class lets an application manage exchanges on the server. This class lets the application script its
own wiring (rather than relying on some configuration interface). Note: Most applications do not need this level of
sophistication, and legacy middleware is unlikely to be able to support this semantic.

The exchange life-cycle is:

1. The client asks the server to make sure the exchange exists (Declare). The client can refine this into, "create the
exchange if it does not exist", or "warn me but do not create it, if it does not exist".

2. The client publishes messages to the exchange.

3. The client may choose to delete the exchange (Delete).

Declare Exchange

This method creates a new exchanges or verifies that an Exchange already exists. The method has the following
arguments:

+ ChannelName: it's the name of the channel (must be open before call this method).

+ ExchangeName: it's the name of the exchange, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).

+ ExchangeType: it's the exchange type, all AMQP servers support "direct” and "fanout" exchanges. Check
the server documentation to know which exchanges types are supported.

» Passive: if passive is true, the server only verifies that the exchange is already declared. If passive is false,
and the exchange not exists, the server will create a new one.

» Durable: if true, the exchange will be re-created when the server starts. If false, the exchange will be delet-
ed when the server stops.

» AutoDelete: if true, the exchange will be deleted when all queues have been unbound.

+ Internal: always false.

+ NoWait: if true, the server doesn't sends an acknowledgment to the client.

+ Arguments: string which contains custom arguments, the values must be passed as a json string,
example: {"x-dead-letter-exchange":"my-dIx"}.

To Declare a new Exchange just call the method DeclareExchange and pass the channel name, exchange name
and exchange type as arguments. The event OnAMQPExchangeDeclare is raised as a confirmation sent by the
server that the exchange has been declared.

AMQP.DeclareExchange('channel_name', 'exchange_name', 'direct');

procedure OnAMQPExchangeDeclare(Sender: TObject; const aChannel, aExchange: string);
begin

DoLog('#AMQP_exchange_declare: [' + aChannel + '] ' + aExchange);
end;

A Synchronous call can be done too calling the method DeclareExchangeEXx, this method returns true if the Ex-
change has been Declared and false if no confirmation from server has arrived.

if AMQP.DeclareExchangeEx('channel _name', 'exchange_name', 'direct') then
DoLog('#AMQP_exchange_declare: [' + aChannel + '] ' + aExchange);
else

DoLog('#AMQP_exchange_declare_error');

Delete Exchange

This method is used to delete an existing Exchange. The method has the following arguments:

» ChannelName: it's the name of the channel (must be open before call this method).

COMPONENTS

+ ExchangeName: it's the name of the exchange, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).

» IfUnused: the server only deletes the exchange if there aren't any queues bound to it.

+ NoWait: if true, the server doesn't sends an acknowledgment to the client.

To Delete an existing Exchange call the method DeleteExchange and pass the channel name and exchange name
as arguments. The event OnAMQPExchangeDelete is raised as a confirmation sent by the server that the ex-
change has been deleted.

A Synchronous call can be done too calling the method DeleteExchangeEx, this method returns true if the Ex-
change has been Deleted and false if no confirmation from server has arrived.

COMPONENTS

Commands | AMQP Queues

The queue class lets an application manage message queues on the server. This is a basic step in almost all appli-
cations that consume messages, at least to verify that an expected message queue is actually present.

The life-cycle for a durable message queue is fairly simple:

1. The client asserts that the message queue exists (Declare, with the "passive" argument).
2. The server confirms that the message queue exists (Declare-Ok).
3. The client reads messages off the message queue.

The life-cycle for a temporary message queue is more interesting:

1. The client creates the message queue (Declare, often with no message queue name so the server will assign a
name). The server confirms (Declare-Ok).

2. The client starts a consumer on the message queue. The precise functionality of a consumer is defined by the
Basic class.

3. The client cancels the consumer, either explicitly or by closing the channel and/or connection.

4. When the last consumer disappears from the message queue, and after a polite time-out, the server deletes the
message queue.

AMQP implements the delivery mechanism for topic subscriptions as message queues. This enables interesting
structures where a subscription can be load balanced among a pool of co-operating subscriber
applications.

The life-cycle for a subscription involves an extra bind stage:

1. The client creates the message queue (Declare), and the server confirms (Declare-Ok).
2. The client binds the message queue to a topic exchange (Bind) and the server confirms (Bind-Ok).
3. The client uses the message queue as in the previous examples.

Declare Queue

This method creates a new queue or verifies that a Queue already exists. The method has the following arguments:

+ ChannelName: it's the name of the channel (must be open before call this method).

* QueueName: it's the name of the queue, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).

» Passive: if passive is true, the server only verifies that the queue is already declared. If passive is false, and
the queue not exists, the server will create a new one.

» Durable: if true, the queue will be re-created when the server starts. If false, the queue will be deleted when
the server stops.

+ Exclusive: if true means the queue is only accessed by the current connection.

+ AutoDelete: if true, the queue will be deleted when all consumers no longer use the queue.

+ NoWait: if true, the server doesn't sends an acknowledgment to the client.

+ Arguments: string which contains custom arguments, the values must be passed as a json string,
example: {"x-dead-letter-exchange":"my-dIx"}.

To Declare a new Queue just call the method DeclareQueue and pass the channel name and queue name as ar-
guments. The event OnNAMQPQueueDeclare is raised as a confirmation sent by the server that the exchange has
been declared.

AMQP.DeclareQueue('channel_name', 'queue_name');

procedure OnAMQPQueueDeclare(Sender: TObject; const aChannel, aQueue: string;
aMessageCount, aConsumerCount: Integer);

begin
DoLog('#AMQP_queue_declare: [' + aChannel + '] ' + aQueue);

end;

COMPONENTS

A Synchronous call can be done too calling the method DeclareQueueEXx, this method returns true if the Queue
has been Declared and false if no confirmation from server has arrived.

if AMQP.DeclareQueueEx('channel_name', 'queue_name') then
DoLog('#AMQP_queue_declare: [' + aChannel + '] ' + aQueue);
else

DoLog('#AMQP_queue_declare_error');

Delete Queue

This method is used to delete an existing Queue. The method has the following arguments:

+ ChannelName: it's the name of the channel (must be open before call this method).

* QueueName: it's the name of the queue, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).

+ IfUnused: the server only deletes the queue if there aren't any consumers attachedt to it.

» IfEmpty: the server only deletes the queue if there are no messages.

+ NoWait: if true, the server doesn't sends an acknowledgment to the client.

To Delete an existing Queue call the method DeleteQueue and pass the channel name and queue name as argu-
ments. The event OnAMQPQueueDelete is raised as a confirmation sent by the server that the queue has been
deleted.

A Synchronous call can be done too calling the method DeleteQueueEx, this method returns true if the Queue has
been Deleted and false if no confirmation from server has arrived.

Bind Queue

This method is used to bind a Queue to a Exchange. The Exchanges use the bindings to know which queues will
be used to route the messages.

All AMQP Servers bind automatically all the queues to the default exchange (it's a "direct" exchange without name)
using the Queue Name as the binding routing key. This allows to send a message to a specific queue without de-
clare a binding. Just call the method PublishMessage, pass an empty value as Exchange Name and set the Rout-
ingKey with the value of the Queue Name.

The method has the following arguments:

+ ChannelName: it's the name of the channel (must be open before call this method).

* QueueName: it's the name of the queue, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).

+ ExchangeName: it's the name of the exchange, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).

* RoutingKey: it's the binding's routing key.

* NoWait: if true, the server doesn't sends an acknowledgment to the client.

+ Arguments: string which contains custom arguments, the values must be passed as a json string,
example: {"x-dead-letter-exchange":"my-dIx"}.

To Bind a Queue to a Exchange call the method BindQueue and pass the channel name, queue name, exchange
and routing key as arguments. The event OnAMQPQueueBind is raised as a confirmation sent by the server that
the queue has been bind.

AMQP.BindQueue('channel_name', 'queue_name', 'exchange_name', 'routing_key');

procedure OnAMQPQueueBind(Sender: TObject; const aChannel, aQueue, aExchange: string);
begin

DoLog('#AMQP_queue_bind: [' + aChannel + '] ' + aQueue + ' -->-- ' + aExchange)
end;

264

COMPONENTS

A Synchronous call can be done too calling the method BindQueueEXx, this method returns true if the Queue has
been Bind and false if no confirmation from server has arrived.

if AMQP.BindQueueEx('channel_name', 'queue_name', 'exchange_name', 'routing_key') then
DoLog('#AMQP_queue_bind: [' + aChannel + '] ' + aQueue + ' --><-- ' + aExchange)
else

DoLog('#AMQP_queue_bind_error');

UnBind Queue

This method deletes an existing queue binding.
The method has the following arguments:

» ChannelName: it's the name of the channel (must be open before call this method).

* QueueName: it's the name of the queue, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).

+ ExchangeName: it's the name of the exchange, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).

* RoutingKey: it's the binding's routing key.

To UnBind a Queue just call the method UnBindQueue and pass the channel name, queue name, exchange and
routing key as arguments. The event OnAMQPQueueUnBind is raised as a confirmation sent by the server that
the queue has been unbind.

A Synchronous call can be done too calling the method UnBindQueueEXx, this method returns true if the Queue
has been UnBind and false if no confirmation from server has arrived.

Purge Queue

This method purges all messages of a queue. All the messages that have been sent but are awaiting acknowledg-
ment are not affected.

The method has the following arguments:

» ChannelName: it's the name of the channel (must be open before call this method).

* QueueName: it's the name of the queue, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).

+ NoWait: if true, the server doesn't sends an acknowledgment to the client.

To Purge a Queue just call the method PurgeQueue and pass the channel name and queue name as arguments.
The event OnAMQPQueuePurge is raised as a confirmation sent by the server that the queue has been Purged.

A Synchronous call can be done too calling the method PurgeQueueEXx, this method returns true if the Queue has
been Purged and false if no confirmation from server has arrived.

COMPONENTS

Commands | AMQP Publish Messages

Publish Messages

The method PublishMessages is used to send a message to the AMQP server.

AMQP Servers automatically bind the queues to "direct" exchange using the queue name as routing key. This al-
lows to send a message to a specific queue without the need to declare a binding (just calling PublishMessage
method and pasing the Exchange argument as empty value and the name of the queue in the RoutingKey argu-
ment).

The method has the following arguments:

+ ChannelName: it's the name of the channel (must be open before call this method).

+ ExchangeName: it's the name of the exchange, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).

* RoutingKey: it's the binding's routing key name.

+ Mandatory: if true and the message cannot be routed to any queue, the message is returned by the server,
the event OnAMQPBasicReturn is fired.

+ Immediate: if true and the message cannot be routed to any queue, the message is returned by the server,
the event OnAMQPBasicReturn is fired.

AMQP.PublishMessage('channel_name', 'exchange_name', 'routing_key', 'Hello from sgcWebSockets!!!');

procedure OnAMQPBasicReturn(Sender: TObject; const aChannel: string;

const aReturn: TsgcAMQPFramePayload_Method_BasicReturn;

const aContent: TsgcAMQPMessageContent);
begin

DoLog('#AMQP_basic_return: ' + aChannel + ' ' + IntToStr(aReturn.ReplyCode) + ' ' + aReturn.ReplyText + ' ' + ¢
end;

Publish Confirmations

Network can fail while publishing a message, the only way to guarantee that a message isn't lost is by using trans-
actions, then for each message/s select transaction, send the message and commit. The confirmation of a suc-
cessful transaction is received when the event OnAMQPTransactionOk is fired.

COMPONENTS

AMQP Consume Messages

Consumers consume from queues. In order to consume messages there has to be a queue. When a new con-
sumer is added, assuming there are already messages ready in the queue, deliveries will start immediately.
The target queue can be empty at the time of consumer registration. In that case first deliveries will happen
when new messages are enqueued.

Consuming messages is an asynchronous task, which means that every time a new message can be delivered
to the consumer queue, it's pushed by the server to the client automatically. You can read an alternative method
to Receive Message Synchronously.

Consume

The method Consume creates a new consumer in the queue, and every time there is a new message this will
be delivered automatically to the consumer client.

The method has the following arguments:

+ ChannelName: it's the name of the channel (must be open before call this method).

* QueueName: it's the name of the queue, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).

+ ConsumerTag: it's the name of the consumer and must be unique. If it's not set, then the server creates a
new one.

» NolLocal: if true means the consumer never consumes messages published on the same channel.

* NoAck: if true means the server doesn't expect an acknowledgment for every message delivered.

» Exclusive: if true prevents that other consumers consume messages from this queue.

* NoWait: if true, the server won't send an acknowledgment to the client.

* Arguments: string which contains custom arguments, the values must be passed as a json string,
example: {"x-dead-letter-exchange":"my-dIx"}.

The messages are delivered OnAMQPBasicDeliver event.

AMQP.Consume('channel_name', 'queue_name', 'consumer_tag');

procedure OnAMQPBasicDeliver(Sender: TObject;
const aChannel: string;
const aDeliver: TsgcAMQPFramePayload_Method_BasicDeliver;
const aContent: TsgcAMQPMessageContent);
begin
DoLog('#AMQP_basic_deliver: ' + aChannel + ' ' + aDeliver.ConsumerTag + ' ' +
' ' + aContent.Body.AsString);
end;

A Synchronous call can be done just calling the method ConsumeEXx, this method returns true if the Consumer has
been created and false if no confirmation from server has arrived.

Cancel Consume

This method is used to Cancel an existing consumer queue.
The method has the following arguments:
» ChannelName: it's the name of the channel (must be open before call this method).

+ ConsumerTag: it's the name of the consumer.
+ NoWait: if true, the server won't send an acknowledgment to the client.

267

COMPONENTS

AMQP.CancelConsume('channel_name', 'consumer_tag');

procedure OnAMQPBasicCancelConsume(Sender: TObject; const aChannel: string; const aConsumerTag);
begin

DoLog('#AMQP_basic_cancel_consume: ' + aChannel + ' ' + aConsumerTag);
end;

A Synchronous call can be done just calling the method CancelConsumeEXx, this method returns true if the Con-
sumer has been cancelled and false if no confirmation from server has arrived.

COMPONENTS

Commands | AMQP Get Messages

Getting messages is a Synchronous task, which means that is the client who ask to server is there are mes-
sages in the queue. You can read an alternative method to Receive Message Aynchronously.

Get Message

The method GetMessage sends a request to the AMQP server asking if there are messages available in a
queue. If there are messages these will be dispatched OnAMQPBasicGetOk event and if the queue is empty,
the event OnAMQPBasicGetEmpty will be called.

The method has the following arguments:

» ChannelName: it's the name of the channel (must be open before call this method).

* QueueName: it's the name of the queue, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).

+ NoWait: if true, the server won't send an acknowledgment to the client.

AMQP .GetMessage('channel_name', 'queue_name');

procedure OnAMQPBasicGetOk(Sender: TObject; const aChannel: string;

const aGetOk: TsgcAMQPFramePayload_Method_BasicGetOk;

const aContent: TsgcAMQPMessageContent);
begin

DoLog('#AMQP_basic_GetOk: ' + aChannel + ' ' + IntToStr(aGetOk.MessageCount) + ' ' + aContent.Body.AsString);
end;

procedure OnAMQPBasicGetEmpty(Sender: TObject; const aChannel: string);
begin

DoLog('#AMQP_basic_GetEmpty: ' + aChannel);
end;

A Synchronous call can be done just calling the method GetMessageEXx, this method returns true if the queue has
messages available, otherwise the result will be false.

COMPONENTS

Commands | AMQP QoS

AMQP allows to set a QoS level to limit the number of messages the server sends to the client before wait to get
the acknowledgment of the messages.

Set QoS

The method SetQoS is used to limit the number messages the server sends to the AMQP client.
The method has the following arguments:

+ ChannelName: it's the name of the channel (must be open before call this method).

+ PrefetchSize: it's the windows size in bytes, the server doesn't send messages to the client if the total size
of all currently unacknowledged messages already sent plus the next message to be sent it's greater than
PrefetchSize argument. If the value is zero, means no limit.

» PrefetchCount: is the maximum number of unacknowledged messages already sent and not acknowl-
edged, if the number is greater, the server stops sending messages to the client.

» Global: if true the QoS applies to all existing and new consumers of the connection. If false, the QoS applies
to all existing and new consumers of the channel.

The response from the server is received OnAMQPBasicQoS event.

AMQP.SetQoS('channel_name', 1024000, 100, false);

procedure OnAMQPBasicQoS(Sender: TObject; const aChannel: string;
const aQoS: TsgcAMQPFramePayload_Method_BasicQoS);

begin
DoLog('#AMQP_basic_qos: ' + aChannel + ' ' + IntToStr(aQoS.PrefetchSize) + ' '
+ IntToStr(aQoS.PrefetchCount) + ' ' + BoolToStr(aQoS.Global));
end;

A Synchronous call can be done just calling the method SetQoSEX, this method returns true if the request has
been processed, otherwise the result will be false.

270

COMPONENTS

Commands | AMQP Transactions

AMQP supports two kinds of transactions:

1. Automatic transactions, in which every published message and acknowledgement is processed as a stand-alone
transaction.

2. Server local transactions, in which the server will buffer published messages and acknowledgements and com-
mit them on demand from the client.

The Transaction class (“tx”) gives applications access to the second type, namely server transactions. The seman-
tics of this class are:

1. The application asks for server transactions in each channel where it wants these transactions (Select).
2. The application does work (Publish, Ack).

3. The application commits or rolls-back the work (Commit, Roll-back).

4. The application does work, ad infinitum.

Transactions cover published contents and acknowledgements, not deliveries. Thus, a rollback does not requeue
or redeliver any messages, and a client is entitled to acknowledge these messages in a following transaction.

The Transaction methods allows publish and ack operations to be batched into atomic units of work. The intention
is that all publish and ack requests issued within a transaction will complete successfully or none of them will.

Start Transaction

The method StartTransaction starts a new transaction in the server, the client uses this method at least once on a
channel before using the Commit or Rollback methods. The event OnAMQPTransactionOk is raised when the
server acknowledges the use of transactions.

AMQP.StartTransaction('channel_name');

procedure OnAMQPTransactionOk(Sender: TObject; const aChannel: string; aTransaction: TsgcAMQPTransaction);
begin
case aTransaction of
amgpTransactionSelect:
DoLog('#AMQP_transaction_ok: [' + aChannel + '] select');
amgpTransactionCommit:
DoLog('#AMQP_transaction_ok: [' + aChannel + '] commit');
amgpTransactionRollback:
DoLog('#AMQP_transaction_ok: [' + aChannel + '] rollback');
end;
end;

A Synchronous call can be done just calling the method StartTransactionEx, this method returns true if the re-
quest has been processed, otherwise the result will be false.

Commit Transaction

This method commits all message publications and acknowledgments performed in the current transaction. A new
transaction starts immediately after a commit. The event OnAMQPTransactionOk is raised when the server ac-
knowledges the use of transactions.

AMQP.CommitTransaction('channel_name');

A Synchronous call can be done just calling the method CommitTansactionEXx, this method returns true if the re-
quest has been processed, otherwise the result will be false.

271

COMPONENTS

Rollback Transaction

This method abandons all message publications and acknowledgments performed in the current transaction. A new
transaction starts immediately after a rollback. Note that unacked messages will not be automatically redelivered by
rollback; if that is required an explicit recover call should be issued. The event OnAMQPTransactionOk is raised
when the server acknowledges the use of transactions.

AMQP.RollbackTransaction('channel_name');

A Synchronous call can be done just calling the method RollbackTransactionEx, this method returns true if the re-
quest has been processed, otherwise the result will be false.

272

COMPONENTS

Protocol AMQP 1.0.0

AMQP (Advanced Message Queuing Protocol) 1.0.0 is a messaging protocol designed for reliable, asynchronous
communication between distributed systems. It facilitates the exchange of messages between applications or com-
ponents in a decoupled manner, allowing them to communicate without direct dependencies. Here's a technical
breakdown of some key aspects of AMQP 1.0.0:

Message-oriented communication: AMQP 1.0.0 is centered around the concept of messages. Messages
can carry data, instructions, or commands and are the fundamental units of communication.

Message Brokers: The protocol operates on a brokered messaging model. Brokers, which can be servers
or intermediary entities, manage the routing and delivery of messages between producers and consumers.
Queues and Exchanges: Queues are storage entities within the broker where messages are temporarily
stored. Exchanges define the rules for routing messages from producers to queues based on criteria like
message content or routing keys.

Addresses and Links: Addresses identify message destinations within the messaging infrastructure. Links
are communication channels between a sender (producer) and a receiver (consumer) associated with a spe-
cific address.

Sessions and Connections: Sessions represent a logical channel for communication, allowing multiple
streams of messages within a single connection. Connections manage the overall communication link be-
tween client applications and the message broker.

Security: AMQP 1.0.0 supports various security mechanisms, including authentication and authorization, to
ensure secure communication between clients and brokers.

Transport Agnostic: The protocol is designed to be transport agnostic, meaning it can operate over differ-
ent network transports such as TCP, TLS, or WebSockets, providing flexibility in deployment.

Flow Control: AMQP 1.0.0 includes mechanisms for flow control, allowing consumers to indicate their ability
to handle incoming messages at a given rate. This helps prevent overwhelming consumers with a large
number of messages.

Error Handling: The protocol specifies mechanisms for handling errors, including acknowledgment and re-
jection of messages, ensuring robustness and reliability in message delivery.

SASL Authentication: Simple Authentication and Security Layer (SASL) is used for authenticating and se-
curing connections between clients and brokers.

Overall, AMQP 1.0.0 provides a standardized and interoperable way for different software components and sys-
tems to communicate in a loosely coupled manner, making it suitable for various distributed and enterprise-level
applications.

Components

TsgcWSPClient_AMQP1: it's the client component that implements AMQP 1.0.0 protocol.

Most common uses

Connection
* Client AMQP1 Connect
* Client AMQP1 Disconnect
« Client AMQP1 Idle Timeout Connection
« Client AMQP1 Connection State
« Client AMQP1 Authentication
» Client AMQP1 Azure Service Bus

Commands
o AMQP1 Sessions
o AMQP1 Links
o AMQP1 Sender Links
o AMQP1 Receiver Links
> AMQP1 Send Message
> AMQP1 Read Message

273

COMPONENTS

274

COMPONENTS

TsgcWSPClient. AMQP1

The TsgcWSClient_AMQP1 client implements the AMQP 1.0.0 protocol following the OASIS specification. The
client supports Plain TCP and WebSocket connections, TLS (secure) connections are supported too.

Configuration

The AMQP 1.0.0 client has the property AMQPOptions where you can configure the connection.

» ChannelMax: The channel-max value is the highest channel number that can be used on the connection.
This
value plus one is the maximum number of sessions that can be simultaneously active on the
connection
» Containerld: (optional) is the name of the source container, identifies uniquely the connection in the server.
+ CreditSize: default size of the credit flow.
+ IdleTimeout: The timeout is triggered by a local peer when no frames
are received after a threshold value is exceeded. The idle timeout is measured in milliseconds, and starts
from
the time the last frame is received.
* MaxFrameSize: the max accepted frame size.
* MaxLinksPerSession: the max number of links per session.
* WindowSize: the default window size.

The AMQP Authentication must be configured in the Authentication property.

» AuthType: type of authentication
o amgp1authNone: not configured.
o amgp1authSASLAnonymous: anonymous authentication
o amgp1authSASLPIlain: user/password authentication. This type of authentication requires to fill the
following properties:
= Username
= Password
o amqp1authSASLExternal: external authentication

Connection

The connection starts with the client (usually a messaging application or service) initiating a TCP connection to the
server (the message broker). The client connects to the server's port, typically 5672 for non-TLS connections and
5671 for TLS-secured connections. Once the TCP connection is established, the client and server negotiate the
AMQP protocol version they will use. AMQP 1.0.0 supports various versions, and during negotiation, both parties
agree on using version 1.0.0.

After protocol negotiation, the client may need to authenticate itself to the server, depending on the server's config-
uration. Authentication mechanisms can include SASL (Simple Authentication and Security Layer) mechanisms like
PLAIN, EXTERNAL, or others supported by the server.

Example: connect to AMQP server listening on secure port 5671 and using SASL credentials

// Creating AMQP client
OAMQP := TsgcWSPClient_AMQP1.Create(nil);
// Setting AMQP authentication options

0AMQP.AMQPOptions.Authentication.AuthType := amgplauthSASLPlain;
0AMQP .AMQPOptions.Authentication.Username := 'sgc';
0AMQP .AMQPOptions.Authentication.Password := 'sgc';

// Creating WebSocket client

oClient := TsgcWebSocketClient.Create(nil);
// Setting WebSocket specifications
oClient.Specifications.RFC6455 := False;
// Setting WebSocket client properties

275

COMPONENTS

oClient.Host := 'www.esegece.com';
oClient.Port := 5671;

oClient.TLS := True;

// Assigning WebSocket client to AMQP client
0AMQP.Client := oClient;

// Activating WebSocket client
oClient.Active := True;

Sessions

Once authenticated, the client opens an AMQP session. A session is a logical context for communication between
the client and server. Sessions are used to group related messaging operations together. Use the method Create-
Session to create a new session, the method allows to set the session name or leave empty and the component
will assign automatically one.

If the session has been created successfully, the event OnAMQPSessionOpen will be fired with the details of the
session.

O0AMQP.CreateSession('MySession');
procedure AMQP1AMQPSessionOpen(Sender: TObject; const aSession: TsgcAMQPl1Session; const aBegin: TsgCcAMQPlFrameBe¢
begin
ShowMessage('#session-open: ' + aSession.Id);
end;

Links

Within a session, the client creates links to communicate with specific entities like queues, topics, or other re-
sources provided by the server. Links are bidirectional communication channels used for sending and receiving
messages.

The component can work as a sender and receiver node. Allows to create any number of links for each session, up
to the limit set in the MaxLinksPerSession property.

Sender Links

To create a new sender link, use the method CreateSenderLink and pass the name of the session and optionally
the name of the sender link. If the link is created successfully, the event OnAMQPLinkOpen is raised.

O0AMQP.CreateSenderLink('MySession', 'MySenderLink');
procedure procedure TfrmClientAMQP1.AMQP1AMQPLinkOpen(Sender: TObject; const aSession: TsgcAMQPl1Session; const al
begin
ShowMessage('#link-open: ' + aLink.Name);
end;

Receiver Links

To create a new receiver link, use the method CreateReceiverLink and pass the name of the session and optional-
ly the name of the receiver link. If the link is created successfully, the event OnAMQPLinkOpen is raised.

276

COMPONENTS

OAMQP.CreateReceiverLink('MySession', 'MyReceiverLink');
procedure procedure TfrmClientAMQP1.AMQP1AMQPLinkOpen(Sender: TObject; const aSession: TsgcAMQPlSession; const al
begin
ShowMessage('#link-open: ' + alLink.Name);
end;

Sending Messages

With the session established and links created, the client can start performing message operations such as sending
messages to a destination. Use the method SendMessage to send a message using a sender link.

0AMQP.SendMessage('MySession', 'MySenderLink', 'My first AMQP Message');

Receiving Messages

By default, the Receiver Links are created in Automatic mode, which means that every time a new message ar-
rives, it will be delivered to the client.

If the Receiver Links has been created in manual mode, use the Sync Method GetMessage to fetch and wait till a
new message arrives.

In Automatic and Manual mode, every time a new message arrives, the event OnAMQPMessage is fired.

procedure OnAMQPMessageEvent(Sender: TObject; const aSession:
TsgcAMQP1Session; const alLink: TsgcAMQP1lReceiverLink; const aMessage:
TsgcAMQP1Message; var DeliveryState: TsgcAMQP1MessageDeliveryState);
begin
ShowMessage(aMessage.ApplicationData.AMQPValue.Value);
end;

277

COMPONENTS

Connection | Client AMQP1 Connect

In order to connect to a AMQP Server, you must create first a TsgcWebSocketClient and a
TsgcWSPClient. AMQP1. Then you must attach AMQP1 Component to WebSocket Client.

After a successful connection, the event OnAMQPConnect is fired.

Basic Usage

Connect to an AMQP 1.0.0 server without authentication. Define the AMQPOptions property values, virtual host
and then set in the TsgcWebSocketClient the Host and Port of the server.
If you are using a TCP Plain connection, set the TsgcWebSocketClient property Specifications.RFC6455 to false.

// Creating AMQP client

OAMQP := TsgcWSPClient_ AMQP1.Create(nil);
// Creating WebSocket client

oClient := TsgcWebSocketClient.Create(nil);
// Setting WebSocket specifications
oClient.Specifications.RFC6455 := False;

// Setting WebSocket client properties
oClient.Host := 'amgp_host_address';
oClient.Port := 5672;

// Assigning WebSocket client to AMQP client
0AMQP.Client := oClient;

// Activating WebSocket client
oClient.Active := True;

Authentication

If the server requires authentication, use the properties AMQP:Authentication to set the values of the Username/
Password and set AuthType to the value "amgp1authSASLPIlain".

// Creating AMQP client
OAMQP := TsgcWSPClient_AMQP1.Create(nil);
// Setting AMQP authentication options

O0AMQP.AMQPOptions.Authentication.AuthType := amgplauthSASLPlain;
0AMQP .AMQPOptions.Authentication.Username := 'sgc';
0AMQP.AMQPOptions.Authentication.Password := 'sgc';

// Creating WebSocket client

oClient := TsgcWebSocketClient.Create(nil);
// Setting WebSocket specifications
oClient.Specifications.RFC6455 := False;

// Setting WebSocket client properties
oClient.Host := 'www.esegece.com';
oClient.Port := 5671;

oClient.TLS := True;

// Assigning WebSocket client to AMQP client
0AMQP.Client := oClient;

// Activating WebSocket client
oClient.Active := True;

278

COMPONENTS

Connection | Client AMQP1 Disconnect

The client can disconnect a current active connection, using the following methods:

Sending a Close Reason

The AMQP client can inform the server that the connection will be closed and provide information about the reason
why is closing the connection. Use the method Close to request a connection close to the server.

OAMQP.Close('invalid-frame', 'The received frame has an invalid format.');

Await Close

By default, the Close method is Asynchronous, so after calling the method, the code continue. If you want to wait
till the Close method is completed and the confirmation sent by the server is received, set the property Await to
True in the Options parameter.

procedure Close(const aCondition, aDescription: string);
var
oOptions: TsgcAMQP1MethodOptions_Close;
begin
oOptions := TsgcAMQP1MethodOptions_Close.Create;
Try
oOptions.ErrorCondition := aCondition;
oOptions.ErrorDescription := aDescription;
oOptions.Await := True;
AMQP1.Close(oOptions);
Finally
oOptions.Free;
End;
end;

Closing Socket Connection

Just set the property Active of TsgcWebSocketClient to False. You can read more about closing connections.

279

COMPONENTS

Connection | Idle Timeout

Connections are subject to an idle timeout threshold. The timeout is triggered by the client when no frames

are received from the server after a threshold value is exceeded. The idle timeout is measured in milliseconds, and
starts from

the time the last frame is received. If the threshold is exceeded the component sends a Close Frame to the server.
If the server does not respond after 10 seconds the client will close the TCP socket.

The Value of the Idle Timeout can be configured in the property:

AMQPOptions.ldleTimeout

The value set in this property will be sent to the server when opening the AMQP connection. If the value is greater
than zero and less than half the MaxInt value, an internal timer will be enabled to check if the idle timeout has not

been exceeded.

Example: set an IdleTimeout value of 60 seconds

AMQPOptions.ldleTimeout = 60000

COMPONENTS

Connection | Connection State

The AMQP 1.0.0 defines the following connection states:

amgp1csUnknown: initial state.

amgp1csStart: In this state a connection exists, but nothing has been sent or received. This is the state an
implementation would be in immediately after performing a socket connect or socket accept.
amqgp1csHeaderReceived: In this state the connection header has been received from the peer but a con-
nection header

has not been sent.

amgp1csHeaderSent: In this state the connection header has been sent to the peer but no connection
header has

been received.

amqp1csHeaderExchanged: In this state the connection header has been sent to the peer and a connec-
tion header has

been received from the peer.

amqgp1csOpenPipe: In this state both the connection header and the open frame have been sent but noth-
ing has

been received.

amqgp1csOpenClosePipe: In this state, the connection header, the open frame, any pipelined connection
traffic, and

the close frame have been sent but nothing has been received.

amqgp1csOpenReceived: In this state the connection headers have been exchanged. An open frame has
been received

from the peer but an open frame has not been sent.

amqgp1csOpenSent: In this state the connection headers have been exchanged. An open frame has been
sent

to the peer but no open frame has yet been received.

amqgp1csClosePipe: In this state the connection headers have been exchanged. An open frame, any
pipelined

connection traffic, and the close frame have been sent but no open frame has yet been

received from the peer.

amqgp1csOpened: In this state the connection header and the open frame have been both sent and re-
ceived.

amqgp1csCloseReceived: In this state a close frame has been received indicating that the peer has initiated
an AMQP

close. No further frames are expected to arrive on the connection; however, frames can still

be sent. If desired, an implementation MAY do a TCP half-close at this point to shut down

the read side of the connection.

amgp1icsCloseSent: In this state a close frame has been sent to the peer. It is illegal to write anything more
onto the connection, however there could potentially still be incoming frames. If desired,

an implementation MAY do a TCP half-close at this point to shutdown the write side of the

connection.

amqgp1icsDiscarding: The DISCARDING state is a variant of the CLOSE SENT state where the close is trig-
gered

by an error. In this case any incoming frames on the connection MUST be silently discarded

until the peer’s close frame is received.

amgp1csEnd: In this state it is illegal for either endpoint to write anything more onto the connection. The
connection can be safely closed and discarded.

The AMQP Client has the property ConnectionState where you can check in which connection state is the client
component.

COMPONENTS

Connection | AMQP1 Authentication

The component has the following authentication methods:

amgp1authNone: there is no authentication method to use when connecting to the server.
amqgp1authSASLAnonymous: connects as anonymous.

amqgp1authSASLPIain: the default, uses a user/password authentication.
amqgp1authSASLExternal: not currently supported.

SASL Authentication

The most common authentication is using amqp1authSASLPIain type. This authentication type, can be enabled in
the AMQP1 component, accessing to the property AMQPOptions.Authentication.

» AuthType: select amqp1authSASLPIain
» Username: the user to use for SASL Authentication.
» Password: the secret value to use for SASL Authentication.

The result of the SASL Authentication can be obtained when the event OnAMQPSASLAuthentication.

procedure OnAMQP1SASLAuthentication(Sender: TObject;

aCode: TsgcAMQPl1SaslCode; const aDescription: string; var Handled: Boolean);
begin

ShowMessage('#sasl-authentication: ' + aDescription);
end;

COMPONENTS

Connection | Azure MessageBus

AMQP (Advanced Message Queuing Protocol) is a robust messaging system designed to facilitate communication
between diverse containers across various nodes. It standardizes both the protocol for transmitting messages and
the structural framework of the messages themselves, ensuring consistent and reliable communication. To dive
deeper into the fundamentals of AMQP, refer to our Getting Started with AMQP guide.

The AMQP component within the eSeGeCe library enables seamless integration with leading cloud messaging bro-
kers, including Amazon MQ and Azure Service Bus. This guide focuses on using the AMQP component to connect
with Azure Service Bus, demonstrating how to build a multi-tenant application capable of sending and receiving
messages efficiently.

The component offers a comprehensive implementation with support for key features such as queues, topics, and
subscriptions, making it an ideal choice for modern IoT and enterprise applications.

Azure Configuration

To begin, create a Service Bus resource within the Azure Portal. Once the resource is established, make sure to
take note of the resource’'s domain name, as it will be essential for integration and configuration.

After the namespace has been successfully created, you can manage and monitor it directly from the namespace
overview in the Azure Portal. This centralized interface provides access to key management tools and settings, en-
abling seamless administration of your Service Bus resource.

When using SAS Authentication, the username is the SAS Policy name and the password is the primary or
seconday key.

// ... create tcp client

oClient := TsgcWebSocketClient.Create(nil);
oClient.Specifications.RFC6455 := False;
oClient.Host := 'esegece.servicebus.windows.net';
oClient.Port := 5671,

oClient.TLS := True;

// ... create amqpl protocol client

0AMQP1 := TsgcWSClient_AMQP1.Create(nil);
0AMQP1.Specifications.RFC6455 := False;
0AMQP1.AMQPOptions.Authentication.AuthType :
0AMQP1.AMQPOptions.Authentication.Username
0AMQP1.AMQPOptions.Authentication.Password
0AMQP1.Client := oClient;

// ... connect to the server

oClient.Active := True;

amgplauthSASLPlain;
'RootManageSharedAccessKey';
'BhJ78+w8kMXhS/eE/nByOcRzodx9tipbi+ASbAXIaH8=";

COMPONENTS

Commands | AMQP1 Sessions

In the context of the AMQP (Advanced Message Queuing Protocol) 1.0.0 specification, a session represents a logi-
cal context for communication between a client and a message broker. Here's a breakdown of what an AMQP 1.0.0
session entails:

» Logical Context: A session establishes a logical context for messaging operations between an AMQP client
(producer or consumer) and an AMQP broker. It provides a way to group related messaging operations to-
gether within a single connection.

+ Communication Channel: Sessions serve as communication channels over which messages are sent and
received. They encapsulate the exchange of messages, acknowledgments, and flow control mechanisms.

+ Transactional Boundaries: Sessions define transactional boundaries for message operations. They enable
the grouping of multiple message sends or receives into a single atomic unit, ensuring that either all opera-
tions within the session are processed successfully or none are processed at all.

* Flow Control: Sessions support flow control mechanisms to regulate the rate at which messages are ex-
changed between the client and the broker. Flow control helps prevent overwhelming the resources of either
party, ensuring efficient and reliable message delivery.

+ Lifetime Management: Sessions have a lifecycle that begins when they are created and ends when they
are closed. Clients can establish multiple sessions within a single connection to parallelize message pro-
cessing or isolate message streams.

* Resource Allocation: Sessions may be associated with specific resources such as queues, topics, or sub-
scriptions within the broker. Messages sent or received within a session are bound to these resources, en-
abling targeted message routing and delivery.

In summary, an AMQP 1.0.0 session provides a logical context for message exchange between an AMQP client
and broker, facilitating transactional integrity, flow control, and resource management within the messaging system.
It defines the boundaries within which messaging operations are performed and helps ensure the efficient and reli-
able exchange of messages.

Open Session

The method CreateSession creates a new session with the given name (or if empty, it creates with a random
name), if the session already exists an exception is raised. The client allows to create multiple session using the
same AMQP connection.

Once the session is successfully created, the event OnAQMPSessionOpen is fired.

OAMQP.CreateSession('MySession');
procedure OnAMQPSessionOpen(Sender: TObject; const aSession: TsgcAMQPl1Session; const aBegin: TsgcAMQPlFrameBegin]
begin
ShowMessage('#session-open: ' + aSession.Id);
end;

The CreateSession method returns the TsgcAMQP1Session class which contains the session information.

Await Open Session

By default, the CreateSession method is Asynchronous, so after calling the method, the code continue. If you
want to wait till the CreateSession method is completed and the confirmation sent by the server is received, set
the property Await to True in the Options parameter.

procedure OpenSession(const aSession: string);
var
oOptions: TsgcAMQP1MethodOptions_SessionOpen;
begin
oOptions := TsgcAMQP1MethodOptions_SessionOpen.Create;

284

COMPONENTS

Try
oOptions.Await := True;
AMQP1.CreateSession(aSession, oOptions);
Finally
oOptions.Free;
End;
end;

Close Session

To Close an existing session use the method CloseSession passing the name of the session to close.

Once the session is successfully closed, the event OnAQMPSessionClose is fired.

0AMQP.CloseSession('MySession');
procedure OnAMQPSessionCloseEvent(Sender: TObject; const aSession: TsgcAMQPl1Session; const atEnd: TsgcAMQP1FrameEr
begin

ShowMessage('#session-close: ' + aSession.Id + ' [' + IntToStr(aSession.Channel) + ']' + ' reason: ' + aEnd.Err
end;

Await Close Session
By default, the CloseSession method is Asynchronous, so after calling the method, the code continue. If you

want to wait till the CloseSession method is completed and the confirmation sent by the server is received, set
the property Await to True in the Options parameter.

procedure CloseSession(const aSession: string);

var
oOptions: TsgcAMQP1MethodOptions_SessionClose;
begin
oOptions := TsgcAMQP1MethodOptions_SessionClose.Create;
Try
oOptions.Await := True;
AMQP1.CloseSession(aSession, oOptions);
Finally
oOptions.Free;
End;

end;

COMPONENTS

Commands | AMQP1 Links

In the AMQP (Advanced Message Queuing Protocol) 1.0.0 specification, a link represents a unidirectional commu-
nication channel between an AMQP client and a message broker. Let's delve deeper into what AMQP 1.0.0 links
entail:

+ Communication Channel: A link serves as a pathway through which messages flow between an AMQP
sender and receiver. It allows for the transmission of messages in one direction, either from the sender to
the receiver or vice versa.

» Unidirectional Flow: Each link is unidirectional, meaning that messages can only travel in one direction
along the link. If bidirectional communication is needed, two links must be established—one for each direc-
tion.

+ Message Transfer: Messages are transferred across links according to the AMQP protocol rules. These
messages can include payloads, message properties, and additional metadata required for communication.

» Resource Binding: Links are associated with specific resources within the AMQP broker, such as queues,
topics, or exchanges. Messages sent or received via a link are directed to or originate from these resources.

» Flow Control: Links support flow control mechanisms to regulate the rate at which messages are sent or re-
ceived. Flow control ensures that neither the sender nor the receiver is overwhelmed by the volume of mes-
sages being exchanged.

+ Lifetime Management: Links have a lifecycle that begins when they are established and ends when they
are closed. They can be created dynamically as needed and closed when they are no longer required.

+ Addressing: Links are identified by unique addresses that specify the source and target endpoints of the
communication. These addresses allow clients and brokers to identify and establish connections to the ap-
propriate endpoints.

* Transactional Boundaries: Links define transactional boundaries for message operations. They enable the
grouping of multiple message sends or receives into a single atomic unit, ensuring consistency and reliability
in message delivery.

In summary, AMQP 1.0.0 links provide a means for unidirectional communication between AMQP clients and bro-
kers, facilitating the transfer of messages while supporting flow control, resource binding, addressing, and transac-
tional integrity within the messaging system. They form the fundamental building blocks of message exchange in
the AMQP protocol.
There are 2 types of Links:

» Sender Links: those links are used to send messages.

* Receiver Links: those links are used to receive messages.

Every time a new link is created or deletes, the following events are fired:

+ OnAMQPLinkOpen: this event is fired when a new link is created. Use the aLink.Mode property to check if
the link is in receiver or sender mode.

« OnAMQPLinkClose: this event is fired when a link is closed.

COMPONENTS

Commands | AMQP1 Sender Links

In the AMQP 1.0.0 protocol, a Sender Link is a communication channel established between an AMQP client
and an AMQP server for the purpose of sending messages. It operates within the context of an AMQP session,
which represents a logical channel for communication between the client and server.

Create Sender Link

To Create a new Sender Link, call the method CreateSenderLink which contains the following parameters:

+ Session: the session name where the sender link will be attached.

+ Name: (optional) the name of the sender link, if is not set, a random name will be assigned automatically.

+ Target: (optional) you can specify the destination where messages should be received on the remote host
by setting the "target" parameter. However, in certain scenarios, specifying the target may not be required. In
such cases, providing an empty string will be sufficient.

» SndSettleMode: (mixed by default) AMQP offers the capability to discuss delivery assurances via the Mes-
sage Settlement mechanism. Upon establishing a link, both the sender and the receiver discuss and agree
upon a settlement mode (one for each role). Senders operate within one of these modes:

o amqgp1ssmSettled: The message is considered successfully delivered and acknowledged once it's
sent.

o amgp1ssmUnsettled: The message is not considered settled until it's explicitly accepted or rejected
by the receiver. This allows for more control over message processing and handling.

o amqgp1ssmMixed: A combination of settled and unsettled modes can be used within a single AMQP
session. Use the MessageOptions parameter of the SendMessage method to configure if the mes-
sage is Settled or not.

When the Sender Link has been created successfully, the event OnAMQPLinkOpen will be fired.

0AMQP1.CreateSenderLink('MySession', 'MySenderLink');
procedure procedure TfrmClientAMQP1.AMQP1AMQPLinkOpen(Sender: TObject; const aSession: TsgcAMQPl1Session; const al
begin
ShowMessage('#1link-open: ' + aLink.Name);
end;

Await Create Sender Link

By default, the CreateSenderLink method is Asynchronous, so after calling the method, the code continue. If you
want to wait till the CreateSenderLink method is completed and the confirmation sent by the server is re-
ceived, set the property Await to True in the Options parameter.

procedure CreateSenderLink(const aSession, aSender: string);
var
oOptions: TsgcAMQP1MethodOptions_CreateSenderLink;

begin
oOptions := TsgcAMQP1MethodOptions_CreateSenderLink.Create;
Try
oOptions.Await := True;
AMQP1.CreateSenderLink(aSession, aSender, '', oOptions);
Finally
oOptions.Free;
End;
end;

Sending Messages

To Send a new Message, call the method SendMessage which contains the following parameters:

287

COMPONENTS

» Session: name of the session.
» Link: name of the sender link.
» Text: the text of the string message.

0AMQP1.SendMessage('MySession', 'MySenderLink', 'My first AMQP Message');

Sending Messages Mixed Mode

When the Sender Link is created in Mixed mode (the default), when sending a message, the user can set if want
the message is settled or not. Use the MessageOptions parameter to define if the message is settled or not.

oMessageOptions := TsgcAMQP1MessageOptions.Create;
Try
oMessageOptions.Settled := True;
0AMQP1.SendMessage('MySession', 'MySenderLink', 'MyMessage', 'message-id', oMessageOptions);
Finally
oMessageOptions.Free;
End;

Close Sender Link

To Close an existing Sender Link, call the method CloseLink which contains the following parameters:

» Session: name of the session that contains the link.
+ Link: name of the sender link.
+ Error: (optional) here you can set the reason why the link is closed.

When the Sender Link has been closed successfully, the event OnAMQPLinkClose will be fired.

0AMQP.CloseLink('MySession', 'MySenderLink');
procedure OnAMQPLinkCloseEvent(Sender: TObject; const aSession: TsgcAMQP1Session; const alLink: TsgcAMQP1Link; cor
begin
ShowMessage('#link-close: ' + aLink.Name);
end;

Await Close Sender Link

By default, the CloseLink method is Asynchronous, so after calling the method, the code continue. If you want to
wait till the CloseLink method is completed and the confirmation sent by the server is received, set the proper-
ty Await to True in the Options parameter.

procedure CloseSenderLink(const aSession, aSenderLink: string);

var
oOptions: TsgcAMQP1MethodOptions_CloselLink;
begin
oOptions := TsgcAMQP1MethodOptions_CloselLink.Create;
Try
oOptions.Await := True;
AMQP1.CloselLink(aSession, aSenderLink, oOptions);
Finally
oOptions.Free;
End;
end;

288

COMPONENTS

Commands | AMQP1 Receiver Links

In the AMQP 1.0.0 protocol, a Receiver Link is a communication channel established between an AMQP client
and an AMQP server for the purpose of receiving messages. It operates within the context of an AMQP session,
which represents a logical channel for communication between the client and server.

Create Receiver Link

To Create a new Receiver Link, call the method CreateReceiverLink which contains the following parameters:

+ Session: the session name where the sender link will be attached.

+ Name: (optional) the name of the sender link, if is not set, a random name will be assigned automatically.

» Source: (optional) the source can be configured to indicate the location of the node on the remote host that
is supposed to act as the sender. In some situations, specifying this address may not be required. In such
cases, simply providing an empty string as the value for the parameters will be enough.

* ReadMode: (amgp1srmAuto by default) Receiver links can function in one of two modes for receiving mes-
sages:

o amqgp1srmAuto: Automatic Mode, in this mode the receiver actively works to ensure that messages
are received promptly as soon as they become available. It automatically listens for and receives
messages without any explicit instruction each time a new message arrives.

o amgp1srmManual: Fetch-Based Mode, in this mode, the receiver will only retrieve or fetch a new
message when it is specifically told to do so. Unlike the automatic mode, the receiver will not actively
listen for new messages but will instead wait for manual instructions to fetch the next message.

* RcvSettleMode: (amgp1rsmFirst by default) Receiver Links operate within one of these modes:

o amgp1rsmFirst: When messages arrive, they will be processed and confirmed right away. If the
message hasn't already been confirmed by the time it was sent, the sender will be informed that the
message has been received.

o amgp1rsmSecond: Messages that arrive will only be confirmed after the sender has confirmed them
first. Additionally, the sender will receive a notification when a message has been received, provided
the message wasn't already confirmed when it was sent.

When the Receiver Link has been created successfully, the event OnAMQPLinkOpen will be fired.

0AMQP1.CreateReceiverLink('MySession', 'MyReceiverLink');
procedure procedure TfrmClientAMQP1.AMQP1AMQPLinkOpen(Sender: TObject; const aSession: TsgcAMQP1Session; const al
begin
ShowMessage('#1link-open: ' + aLink.Name);
end;

Await Create Receiver Link

By default, the CreateReceiverLink method is Asynchronous, so after calling the method, the code continue. If
you want to wait till the CreateReceiverLink method is completed and the confirmation sent by the server is
received, set the property Await to True in the Options parameter.

procedure CreateReceiverLink(const aSession, aReceiver: string);
var
oOptions: TsgcAMQP1MethodOptions_CreateReceiverLink;

begin
oOptions := TsgcAMQP1MethodOptions_CreateReceiverLink.Create;
Try
oOptions.Await := True;
AMQP1.CreateReceiverLink(aSession, aReceiver, '', oOptions);
Finally
oOptions.Free;
End;
end;

COMPONENTS

Sync Messages

When the Receiver Link works in Manual ReadMode, call the method GetMessage to get new messages. This
method is synchronous, which means that waits till a timeout is exceeded (by default 10 seconds). When the
method is called, the component increases the credit in one unit and waits till a new message arrives or the timeout
has been exceeded. If no message arrives, the credit is set to zero again.

The method GetMessage has the following parameters:
+ Session: name of the session that contains the link.

+ Link: name of the receiver link.
* Timeout: (by default 1000 = 10 seconds) the max time the function will wait to get a new message.

Close Receiver Link

To Close an existing Receiver Link, call the method CloseLink which contains the following parameters:

« Session: name of the session that contains the link.
« Link: name of the receiver link.
» Error: (optional) here you can set the reason why the link is closed.

When the Receiver Link has been closed successfully, the event OnAMQPLinkClose will be fired.

0AMQP1.CloseLink('MySession', 'MyReceiverLink');
procedure OnAMQPLinkCloseEvent(Sender: TObject; const aSession: TsgcAMQPl1Session; const alLink: TsgcAMQP1Link; cor
begin
ShowMessage('#1link-close: ' + alLink.Name);
end;

Await Close Receiver Link

By default, the CloseLink method is Asynchronous, so after calling the method, the code continue. If you want to
wait till the CloseLink method is completed and the confirmation sent by the server is received, set the proper-
ty Await to True in the Options parameter.

procedure CloseReceiverLink(const aSession, aReceiverLink: string);

var
oOptions: TsgcAMQP1MethodOptions_CloselLink;
begin
oOptions := TsgcAMQP1MethodOptions_CloselLink.Create;
Try
oOptions.Await := True;
AMQP1.CloselLink(aSession, aReceiverLink, oOptions);
Finally
oOptions.Free;
End;

end;

COMPONENTS

AMQP1 | Send Message

Read first AMQP1 Sender Links to know how to create a Sender Link.

Send Message

Use the method SendMessage passing the Session and SenderLink name to send a text message to the AMQP1
Server. The method has the following parameters:

+ Session: name of the session.
* Link: name of the sender link.
+ Text: text of the message.
+ Messageld: (optional) the id of the message, it can be used when using unsettled mode, to know if the serv-
er has processed the message.
» Options: (optional) allows to customize some options when sending the message.
o Settled: when using a sender link in mixed mode, when sending a message the Settled property can
be customized.
o Await: if the message is unsettled, and the value is true, the code will wait till the message is
processed by the server or the timeout has exceeded.
o Timeout: value in milliseconds if await is true (by default 10000).
> RaiseTimeoutException: if the timeout is exceeded, an exception is raised (by default true).

0AMQP1.SendMessage('MySession', 'MySenderLink', 'My first AMQP Message');

Await Send Message

By default, the SendMessage method is asynchronous when sending a message unsettled, setting the property
Await to true, the client will wait till receives a confirmation from the server that the message has been processed.

procedure SendMessageAwait(const aSession, aSenderLink, aText: string);
var
oOptions := TsgcAMQP1MethodOptions_SendMessageAck.Create;
begin
Try
oOptions.Settled := False;
oOptions.Await := True;
AMQP1.SendMessage(aSession, aSenderLink, aText, 'messsage-id', oOptions);
Finally
oOptions.Free;
End;
end;

Events

When sending a message, there are 2 Events that can be used to know when the message is sent and if the mes-
sage has been processed by the server (when sending unsettled).

+ OnAMQPMessageSent: this event is called after the message is sent to the server. When calling the

method SendMessage, the message is stored in an internal queue and processed by a secondary thread, so
after the message is sent, this event is called.

COMPONENTS

+ OnAMQPMessageSentAck: this event is called, when the client receives a confirmation that the message
has been processed by the AMQP1 Server.

procedure OnAMQPMessageSentAck(Sender: TObject;

const aSession: TsgcAMQP1Session; const alLink: TsgcAMQPi1SenderLink;

const aMessageId: string; const aDeliveryState: TsgcAMQPlFrameDeliveryStates;
const aDisposition: TsgcAMQPlFrameDisposition);

var
vMessageId: string;
begin
vMessageId := aMessageId;
case aDeliveryState of
amgplfdtsAccepted:

ShowMessage('#msg-accepted: ' + vMessageId);

amgplfdtsRejected:

ShowMessage('#msg-rejected: ' + vMessageId + ' ' + TsgcAMQPlFrameRejected
(abDisposition.State).Error.Condition + ' ' + TsgcAMQPlFrameRejected
(aDisposition.State).Error.Description);

amgplfdtsReleased:

ShowMessage('#msg-released: ' + vMessageld);

amgplfdtsModified:

ShowMessage('#msg-modified: ' + vMessageId + ' ' + TsgcAMQP1FrameModified
(aDisposition.State).MessageAnnotations);

amgplfdtsReceived:

ShowMessage('#msg-received: ' + vMessageld);

end;

end;

COMPONENTS

AMQP1 | Read Message

Every time a new message is received, the event OnAMQPMessage is fired.

The TsgcAMQP1Message instance contains the message received. You can access to the text message using the
property aMessage.ApplicationData.AMQPValue.Value.

To specify the Delivery Outcome, use the DeliveryState parameter. By default, all the messages have the accept-
ed state, but you can set one of the following:

+ amgpimdtsAccepted: The message has been processed successfully.

+ amqgp1mdtsRejected: The message failed to process successfully. Set the error using the
property DeliveryState.Rejected.

+ amgpimdtsReleased: The message has not been and won't be processed.

+ amgp1mdtsModified: Same as amgp1mdtsReleased, but you can add additional data using the property
DeliveryState.Modified.

procedure OnAMQPMessage(Sender: TObject;

const aSession: TsgcAMQP1Session; const alLink: TsgcAMQP1ReceiverLink;
const aMessage: TsgcAMQPlMessage;

var DeliveryState: TsgcAMQPlMessageDeliveryState);

begin

if aMessage.ApplicationData.AMQPValue.Value = 'xxx' then

begin
DeliveryState.State := amgplmdtsRejected;
DeliveryState.Rejected.Error.Condition := 'amgp-error-processing';
DeliveryState.Rejected.Error.Description := 'Value received was not the expected.';

end

else

DeliveryState.State := amgplmdtsAccepted;
end;

COMPONENTS

Protocol STOMP

STOMP is the Simple (or Streaming) Text Orientated Messaging Protocol. STOMP provides an interoperable wire
format so that STOMP clients can communicate with any STOMP message broker to provide easy and widespread
messaging interoperability among many languages, platforms and brokers.

Our STOMP client components support following STOMP versions: 1.0, 1.1 and 1.2.

Components

TsgcWSPClient_STOMP: generic STOMP Protocol client, allows to connect to any STOMP Server.
TsgcWSPClient_STOMP_RabbitMQ: STOMP client for RabbitMQ Broker.

TsgcWSPClient_STOMP_ActiveMQ: STOMP client for ActiveMQ Broker.

294

COMPONENTS

TsgcWSPClient STOMP

This is Client Protocol STOMP Component, you need to drop this component in the form and select a TsgcWeb-
SocketClient Component using Client Property.

Methods

Send: The SEND frame sends a message to a destination in the messaging system.

Subscribe: The SUBSCRIBE frame is used to register to listen to a given destination.

UnSubscribe: The UNSUBSCRIBE frame is used to remove an existing subscription.

ACK: ACK is used to acknowledge the consumption of a message from a subscription.

NACK: NACK is the opposite of ACK. It is used to tell the server that the client did not consume the message.

BeginTransaction: is used to start a transaction. Transactions in this case apply to sending and acknowledging -
any messages sent or acknowledged during a transaction will be processed atomically based on the transaction.

CommitTransaction: is used to commit a transaction in progress.
AbortTransaction: is used to roll back a transaction in progress.

Disconnect: use to graceful shutdown connection, where the client is assured that all previous frames have been
received by the server.

Events

OnSTOMPConnected: this event is fired after a new connection is established.
version : The version of the STOMP protocol the session will be using. See Protocol Negotiation for more
details.
STOMP 1.2 servers MAY set the following headers:
heart-beat : The Heart-beating settings.
session : A session identifier that uniquely identifies the session.
server : A field that contains information about the STOMP server. The field MUST contain a server-name
field and MAY be followed by optional comment fields delimited by a space character.

OnSTOMPMessage: this event is fired when the client receives a message.
The MESSAGE frame MUST include a destination header indicating the destination the message was sent
to. If the message has been sent using STOMP, this destination header SHOULD be identical to the one
used in the corresponding SEND frame.
The MESSAGE frame MUST also contain a message-id header with a unique identifier for that message
and a subscription header matching the identifier of the subscription that is receiving the message.
If the message is received from a subscription that requires explicit acknowledgment (either client or client-
individual mode) then the MESSAGE frame MUST also contain an ack header with an arbitrary value. This
header will be used to relate the message to a subsequent ACK or NACK frame.
MESSAGE frames SHOULD include a content-length header and a content-type header if a body is present.
MESSAGE frames will also include all user-defined headers that were present when the message was sent
to the destination in addition to the server-specific headers that MAY get added to the frame.

OnSTOMPReceipt: this event is fired once a server has successfully processed a client frame that requests a re-
ceipt.
A RECEIPT frame is an acknowledgment that the corresponding client frame has been processed by the
server. Since STOMP is stream based, the receipt is also a cumulative acknowledgment that all the previous
frames have been received by the server. However, these previous frames may not yet be fully processed. If
the client disconnects, previously received frames SHOULD continue to get processed by the server.

COMPONENTS

OnSTOMPError: this event is fired if something goes wrong.
The ERROR frame SHOULD contain a message header with a short description of the error, and the body
MAY contain more detailed information (or MAY be empty).
If the error is related to a specific frame sent from the client, the server SHOULD add additional headers to
help identify the original frame that caused the error. For example, if the frame included a receipt header, the
ERROR frame SHOULD set the receipt-id header to match the value of the receipt header of the frame
which the error is related to.
ERROR frames SHOULD include a content-length header and a content-type header if a body is present.

Properties

Authentication: disabled by default, if True a UserName and Password are sent to the server to try user authen-
tication.

HeartBeat: Heart-beating can optionally be used to test the healthiness of the underlying TCP connection and to
make sure that the remote end is alive and kicking. In order to enable heart-beating, each party has to declare what
it can do and what it would like the other party to do. 0 means it cannot send/receive heart-beats, otherwise it is the
desired number of milliseconds between heart-beats.

Options: The name of a virtual host that the client wishes to connect to. It is recommended clients set this to the
host name that the socket was established against, or to any name of their choosing. If this header does not match
a known virtual host, servers supporting virtual hosting MAY select a default virtual host or reject the connection.

Versions: Set which STOMP versions are supported.

ConnectHeaders: Allows to send custom headers when CONNECT method is sent.

COMPONENTS

TsgcWSPClient STOMP_ RabbitMQ

This is Client Protocol STOMP Component for RabbitMQ Broker, you need to drop this component in the form and
select a TsgcWebSocketClient Component using Client Property.

Destinations

The STOMP specification does not prescribe what kinds of destinations a broker must support, instead the value of
the destination header in SEND and MESSAGE frames is broker-specific. The RabbitMQ STOMP adapter supports
a number of different destination types:

Topic: SEND and SUBSCRIBE to transient and durable topics.

Queue: SEND and SUBSCRIBE to queues managed by the STOMP gateway.
QueueOutside: SEND and SUBSCRIBE to queues created outside the STOMP gateway.
TemporaryQueue: create temporary queues (in reply-to headers only).

Exchange: SEND to arbitrary routing keys and SUBSCRIBE to arbitrary binding patterns.

Methods

Publish: The SEND frame sends a message to a destination in the messaging system.
PublishTopic
PublishQueue
PublishQueueOutside
PublishTemporaryQueue
PublishExchange

Subscribe: The SUBSCRIBE frame is used to register to listen to a given destination. Supports following sub-
scriptions
SubscribeTopic
SubscribeQueue
SubscribeQueueOutside
SubscribeTemporaryQueue
SubscribeExchange

UnSubscribe: The UNSUBSCRIBE frame is used to remove an existing subscription. Supports following UnSub-
scriptions
UnSubscribeTopic
UnSubscribeQueue
UnSubscribeQueueOutside
UnSubscribeTemporaryQueue
UnSubscribeExchange

ACK: ACK is used to acknowledge the consumption of a message from a subscription.
NACK: NACK is the opposite of ACK. It is used to tell the server that the client did not consume the message.

BeginTransaction: is used to start a transaction. Transactions in this case apply to sending and acknowledging -
any messages sent or acknowledged during a transaction will be processed atomically based on the transaction.

CommitTransaction: is used to commit a transaction in progress.
AbortTransaction: is used to roll back a transaction in progress.

Disconnect: use to graceful shutdown connection, where the client is assured that all previous frames have been
received by the server.

297

COMPONENTS

Events

OnRabbitMQConnected: this event is fired after a new connection is established.
version : The version of the STOMP protocol the session will be using. See Protocol Negotiation for more
details.
STOMP 1.2 servers MAY set the following headers:
heart-beat : The Heart-beating settings.
session : A session identifier that uniquely identifies the session.
server : A field that contains information about the STOMP server. The field MUST contain a server-name
field and MAY be followed by optional comment fields delimited by a space character.

OnRabbitMQMessage: this event is fired when the client receives a message.
The MESSAGE frame MUST include a destination header indicating the destination the message was sent
to. If the message has been sent using STOMP, this destination header SHOULD be identical to the one
used in the corresponding SEND frame.
The MESSAGE frame MUST also contain a message-id header with a unique identifier for that message
and a subscription header matching the identifier of the subscription that is receiving the message.
If the message is received from a subscription that requires explicit acknowledgment (either client or client-
individual mode) then the MESSAGE frame MUST also contain an ack header with an arbitrary value. This
header will be used to relate the message to a subsequent ACK or NACK frame.
MESSAGE frames SHOULD include a content-length header and a content-type header if a body is present.
MESSAGE frames will also include all user-defined headers that were present when the message was sent
to the destination in addition to the server-specific headers that MAY get added to the frame.

OnRabbitMQReceipt: this event is fired once a server has successfully processed a client frame that requests a
receipt.
A RECEIPT frame is an acknowledgment that the corresponding client frame has been processed by the
server. Since STOMP is stream based, the receipt is also a cumulative acknowledgment that all the previous
frames have been received by the server. However, these previous frames may not yet be fully processed. If
the client disconnects, previously received frames SHOULD continue to get processed by the server.

OnRabbitMQError: this event is fired if something goes wrong.
The ERROR frame SHOULD contain a message header with a short description of the error, and the body
MAY contain more detailed information (or MAY be empty).
If the error is related to a specific frame sent from the client, the server SHOULD add additional headers to
help identify the original frame that caused the error. For example, if the frame included a receipt header, the
ERROR frame SHOULD set the receipt-id header to match the value of the receipt header of the frame
which the error is related to.
ERROR frames SHOULD include a content-length header and a content-type header if a body is present.

Properties

Authentication: disabled by default, if True a UserName and Password are sent to the server to try user authen-
tication.

HeartBeat: Heart-beating can optionally be used to test the healthiness of the underlying TCP connection and to
make sure that the remote end is alive and kicking. In order to enable heart-beating, each party has to declare what
it can do and what it would like the other party to do. 0 means it cannot send/receive heart-beats, otherwise it is the
desired number of milliseconds between heart-beats.

Options: The name of a virtual host that the client wishes to connect to. It is recommended clients set this to the
host name that the socket was established against, or to any name of their choosing. If this header does not match
a known virtual host, servers supporting virtual hosting MAY select a default virtual host or reject the connection.

Versions: Set which STOMP versions are supported.

COMPONENTS

TsgcWSPClient STOMP_ ActiveMQ

This is Client Protocol STOMP Component for ActiveMQ Broker, you need to drop this component in the form and
select a TsgcWebSocketClient Component using Client Property.

Destinations

The STOMP specification does not prescribe what kinds of destinations a broker must support, instead the value of
the destination header in SEND and MESSAGE frames is broker-specific. The Active STOMP adapter supports a
number of different destination types:

» Topic: SEND and SUBSCRIBE to transient and durable topics.
* Queue: SEND and SUBSCRIBE to queues managed by the STOMP gateway.

Publish Options

Note that STOMP is designed to be as simple as possible - so any scripting language/platform can message any
other with minimal effort. STOMP allows pluggable headers on each request such as sending & receiving mes-
sages. ActiveMQ has several extensions to the Stomp protocol, so that JMS semantics can be supported by Stomp
clients. An OpenWire JMS producer can send messages to a Stomp consumer, and a Stomp producer can send
messages to an OpenWire JMS consumer. And Stomp to Stomp configurations, can use the richer JMS message
control.

STOMP supports the following standard JMS properties on SENT messages:

Correlationld: Good consumers will add this header to any responses they send.

Expires: Expiration time of the message.

JMSXGrouplD: Specifies the Message Groups.

JMSXGroupSeq: Optional header that specifies the sequence number in the Message Groups.
Persistent: Whether or not the message is persistent.

Priority: Priority on the message.

ReplyTo: Destination you should send replies to.

MsgType: Type of the message.

Methods

Publish: The SEND frame sends a message to a destination in the messaging system.
PublishTopic
PublishQueue

Subscribe: The SUBSCRIBE frame is used to register to listen to a given destination. Supports following sub-
scriptions
SubscribeTopic
SubscribeQueue

UnSubscribe: The UNSUBSCRIBE frame is used to remove an existing subscription. Supports following UnSub-
scriptions
UnSubscribeTopic
UnSubscribeQueue
ACK: ACK is used to acknowledge the consumption of a message from a subscription.

NACK: NACK is the opposite of ACK. It is used to tell the server that the client did not consume the message.

COMPONENTS

BeginTransaction: is used to start a transaction. Transactions in this case apply to sending and acknowledging -
any messages sent or acknowledged during a transaction will be processed atomically based on the transaction.

CommitTransaction: is used to commit a transaction in progress.
AbortTransaction: is used to roll back a transaction in progress.

Disconnect: use to graceful shutdown connection, where the client is assured that all previous frames have been
received by the server.

Events

OnActiveMQConnected: this event is fired after a new connection is established.
version : The version of the STOMP protocol the session will be using. See Protocol Negotiation for more
details.
STOMP 1.2 servers MAY set the following headers:
heart-beat : The Heart-beating settings.
session : A session identifier that uniquely identifies the session.
server : A field that contains information about the STOMP server. The field MUST contain a server-name
field and MAY be followed by optional comment fields delimited by a space character.

OnActiveMQMessage: this event is fired when the client receives a message.
The MESSAGE frame MUST include a destination header indicating the destination the message was sent
to. If the message has been sent using STOMP, this destination header SHOULD be identical to the one
used in the corresponding SEND frame.
The MESSAGE frame MUST also contain a message-id header with a unique identifier for that message
and a subscription header matching the identifier of the subscription that is receiving the message.
If the message is received from a subscription that requires explicit acknowledgment (either client or client-
individual mode) then the MESSAGE frame MUST also contain an ack header with an arbitrary value. This
header will be used to relate the message to a subsequent ACK or NACK frame.
MESSAGE frames SHOULD include a content-length header and a content-type header if a body is present.
MESSAGE frames will also include all user-defined headers that were present when the message was sent
to the destination in addition to the server-specific headers that MAY get added to the frame.

OnActiveMQReceipt: this event is fired once a server has successfully processed a client frame that requests a
receipt.
A RECEIPT frame is an acknowledgment that the corresponding client frame has been processed by the
server. Since STOMP is stream based, the receipt is also a cumulative acknowledgment that all the previous
frames have been received by the server. However, these previous frames may not yet be fully processed. If
the client disconnects, previously received frames SHOULD continue to get processed by the server.

OnActiveMQError: this event is fired if something goes wrong.
The ERROR frame SHOULD contain a message header with a short description of the error, and the body
MAY contain more detailed information (or MAY be empty).
If the error is related to a specific frame sent from the client, the server SHOULD add additional headers to
help identify the original frame that caused the error. For example, if the frame included a receipt header, the
ERROR frame SHOULD set the receipt-id header to match the value of the receipt header of the frame
which the error is related to.
ERROR frames SHOULD include a content-length header and a content-type header if a body is present.

Properties

Authentication: disabled by default, if True a UserName and Password are sent to the server to try user authen-
tication.

HeartBeat: Heart-beating can optionally be used to test the healthiness of the underlying TCP connection and to
make sure that the remote end is alive and kicking. In order to enable heart-beating, each party has to declare what
it can do and what it would like the other party to do. 0 means it cannot send/receive heart-beats, otherwise it is the
desired number of milliseconds between heart-beats.

COMPONENTS

Options: The name of a virtual host that the client wishes to connect to. It is recommended clients set this to the
host name that the socket was established against, or to any name of their choosing. If this header does not match
a known virtual host, servers supporting virtual hosting MAY select a default virtual host or reject the connection.

Versions: Set which STOMP versions are supported.

COMPONENTS

Protocol AppRTC

WebRTC (Web Real-Time Communication) is an API definition being drafted by the World Wide Web Consortium
(W3C) to enable browser to browser applications for voice calling, video chat and P2P file sharing without plugins.
The RTC in WebRTC stands for Real-Time Communications, a technology that enables audio/video streaming and
data sharing between browser clients (peers). As a set of standards, WebRTC provides any browser with the ability
to share application data and perform teleconferencing peer to peer, without the need to install plug-ins or third-par-
ty software.

WebRTC components are accessed with JavaScript APIs. Currently, in development are the Network Stream API,
which represents an audio or video data stream, and the PeerConnection API, which allows two or more users to
communicate browser-to-browser. Also under development is a DataChannel API that enables communication of
other types of data for real-time gaming, text chat, file transfer, and so forth.

appr.tc is a WebRTC demo application developed by Google and Mozilla, it enables both browsers to “talk” to each
other using the WebRTC API.

Components

TsgcWSPServer_AppRTC: Server Protocol AppRTC VCL Component.

https://appr.tc

COMPONENTS

TsgcWSPServer AppRTC

This is Server Protocol AppRTC Component, you need to drop this component in the form and select a TsgcWeb-
SocketServer Component using Server Property.

Parameters

» IceServers: here you can configure turn/stun servers for WebRTC connections.
* RoomLink: URL base to access room. Example: https://mydemo.com/r/
* WebSocketURL: URL to WebSocket server. Example: wss://mydemo.com

WebRTC Protocol requires STUN/TURN server, demos use public STUN/TURN servers for testing purposes. In or-
der to put in a production system, a dedicated STUN/TURN server is required.

Registered users can download compiled binaries of Coturn server for Windows. Read more about COTURN
STUN/TURN.

IceServers Configuration

If you are running your STUN/TURN server in the following IP Address: 51.122.4.88 and is listening port 3478. User
to connect is "apprtc" and credential is "secret". Configure the IceServers as follows:

"lifetimeDuration": "86400s",
"iceServers": [{
"urls": "stun:51.122.4.88:3478",
"username": "apprtc",

"credential": "secret"

oA
"urls": "turn:51.122.4.88:3478",
"username": "apprtc",
"credential": "secret"

1,
"blockStatus": "NOT_BLOCKED",
"iceTransportPolicy": "all"

COMPONENTS

Protocol WebRTC

WebRTC (Web Real-Time Communication) is an API definition being drafted by the World Wide Web Consortium
(W3C) to enable the browser to browser applications for voice calling, video chat and P2P file sharing without plug-
ins. The RTC in WebRTC stands for Real-Time Communications, a technology that enables audio/video streaming
and data sharing between browser clients (peers). As a set of standards, WebRTC provides any browser with the
ability to share application data and perform teleconferencing peer to peer, without the need to install plug-ins or
third-party software.

WebRTC components are accessed with JavaScript APIs. Currently, in development are the Network Stream API,
which represents an audio or video data stream, and the PeerConnection API, which allows two or more users to
communicate browser-to-browser. Also under development is a DataChannel API that enables communication of
other types of data for real-time gaming, text chat, file transfer, and so forth.

Components

TsgcWSPServer WebRTC: Server Protocol WebRTC VCL Component.

Parameters

* IceServers: here you can configure turn/stun servers for WebRTC connections. By default uses the follow-
ing public STUN servers

{"iceServers": [{"url": "stun:stun.l.google.com:19302"}]}

Browser Test

If you want to test this protocol with your favourite Web Browser, please type this url (you need to define your cus-
tom host and port)

http://host:port/webrtc.esegece.com.html

304

COMPONENTS

TsgcWSPServer WebRTC

This is Server Protocol WebRTC Component, you need to drop this component in the form and select a TsgcWeb-
SocketServer Component using Server Property.

WebRTC Protocol requires STUN/TURN server, demos use public STUN/TURN servers for testing purposes. In or-
der to put in a production system, a dedicated STUN/TURN server is required.

Registered users can download compiled binaries of Coturn server for Windows. Read more about COTURN
STUN/TURN.

Properties

» ICEServers: define here the ICE Servers you want to use in the WebRTC sessions. Example:

{"iceServers": [{"url": "stun:stun.l.google.com:19302"}]}

+ CloseSessionOnHangup: by default true, if enabled when a remote peer closes the connection, the other
peer is disconnected too. If you want maintain the other peer connection when the peer disconnects, set this
property to false.

COMPONENTS

Protocol WebRTC Javascript

Here you can find available methods, you need to replace {%host%} and {%port%} variables as needed, example:
if you have configured your sgcWebSocket server to listen port 80 on www.example.com website you need to con-
figure:

<script src="http://www.example.com:80/sgcWebSockets.js"></script>
<script src="http://www.example.com:80/webrtc.esegece.com.js"></script>

Open Connection

When a WebSocket connection is opened, browser request access to local camera and microphone,
you need to allow access.

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/webrtc.esegece.com.js"></script>
<script>

var socket = new sgcws_webrtc('ws://{%host%}:{%port%}');
</script>

Open WebRTC Channel

When a browser has access to local camera and microphone, 'sgcmediastart' event is fired and then
you can try to connect to another client using webrtc_connect procedure

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/webrtc.esegece.com.js"></script>
<script>
var socket = new sgcws_webrtc('ws://{%host%}:{%port%}');
socket.on('sgcmediastart', function(event)

socket .webrtc_connect('custom channel');

}

</script>

Close WebRTC channel

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/webrtc.esegece.com.js"></script>
<script>

socket.webrtc_disconnect('custom channel');
</script>

COMPONENTS

Protocol WAMP

WAMP is an open WebSocket subprotocol that provides two asynchronous messaging patterns: RPC and PubSub.

Technically, WAMP is an officially registered WebSocket subprotocol (runs on top of WebSocket) that uses JSON
as message serialization format.

What is RPC?

Remote Procedure Call (RPC) is a messaging pattern involving peers to two roles: client and server.

A server provides methods or procedure to call under well-known endpoints.

A client calls remote methods or procedures by providing the method or procedure endpoint and any arguments for
the call.

The server will execute the method or procedure using the supplied arguments to the call and return the result of
the call to the client.

What is PubSub?

Publish & Subscribe (PubSub) is a messaging pattern involving peers of three roles: publisher, subscriber and bro-
ker.

A publisher sends (publishes) an event by providing a topic (aka channel) as the abstract address, not a specific
peer.

A subscriber receives events by first providing topics (aka channels) he is interested. Subsequently, the subscriber
will receive any events publishes to that topic.

The broker sits between publishers and subscribers and mediates messages publishes to subscribers. A broker will
maintain lists of subscribers per topic so it can dispatch new published events to the appropriate subscribers.

A broker may also dispatch events on its own, for example when the broker also acts as an RPC server and a
method executed on the server should trigger a PubSub event.

In summary, PubSub decouples publishers and receivers via an intermediary, the broker.

Components

TsgcWSPServer WAMP: Server Protocol WAMP VCL Component.
TsgcWSPClient_ WAMP: Client Protocol WAMP VCL Component.

Javascript Component: Client Javascript Reference.

Most Common Uses

« RPC

+ Simple RPC

* RPC Progress Results
¢ PubSub

» Subscribers

* Publishers

Browser Test

If you want to test this protocol with your favourite Web Browser, please type this URL(you need to define your cus-
tom host and port)

http://host:port/wamp.esegece.com.html

307

COMPONENTS

TsgcWSPServer WAMP

This is Server Protocol WAMP Component, you need to drop this component in the form and select a TsgcWeb-
SocketServer Component using Server Property.

Methods

CallResult: When the execution of the remote procedure finishes successfully, the server responds by sending a
message with the result.

. Callld: this is the ID generated by client when request a call to a procedure
. Result: is the result, can be a number, a JSON object...

CallProgressResult: when rpc has multiple results, this method is called when still there are more results to
send. Example: if method has 20 results, from method 1 to 19, CallProgressResult must be called. And the final
method, number 20, must be called with CallResult to finish method.

Callld: this is the ID generated by client when request a call to a procedure
. Result: is the result, can be a number, a JSON object...

CallError: When the remote procedure call could not be executed, an error or exception occurred during the exe-
cution or the execution of the remote procedure finishes unsuccessfully for any other reason, the server responds
by sending a message with error details.

. Callld: this is the ID generated by the client when requesting a call to a procedure
. ErrorURI: identifies the error.

. ErrorDesc: error description.

. ErrorDetails: application error details, is optional.

Event: Subscribers receive PubSub events published by subscribers via the EVENT message.

. TopicURI: channel name where is subscribed.
. Event: message text.
Events

OnCall: event fired when the server receives RPC called by the client

. Callld: this is the ID generated by the client when requesting a call to a procedure
. ProcUri: procedure identifier...
. Arguments: procedure params, can be a integer, a JSON object, a list...

OnBeforeCancelCall: event fired when the server receives a request to cancel a Call from client.

Callld: this is the ID generated by the client when requesting a call to a procedure
. Cancel: by default is True, which means that Call will be cancelled. If server doesn't want cancel this
call, set this parameter to false.

OnPrefix: Procedures and Errors are identified using URIs or CURIEs, this event is fired when a client sends a
new prefix

. Prefix: compact URI expression.
. URI: full URI.

COMPONENTS

COMPONENTS

TsgcWSPClient WAMP

This is Client Protocol WAMP Component, you need to drop this component in the form and select a TsgcWeb-
SocketClient Component using Client Property.

Methods

Prefix: Procedures and Errors are identified using URIs or CURIEs, the client uses this method to send a new
prefix.

. aPrefix: compact URI expression.
. aURI: full URL.

Subscribe: A client requests access to a valid topicURI (or CURIE from Prefix) to receive events published to the
given topicURI. The request is asynchronous, the server will not return an acknowledgement of the subscription.

. aTopicURI: channel name.

UnSubscribe: Calling unsubscribe on a topicURI informs the server to stop delivering messages to the client pre-
viously subscribed to that topicURI.

. aTopicURI: channel name.

Call: sent by the client when requests a Remote Procedure Call (RPC)

. aCallld: this is the UUID generated by client
. aProcURI: procedure identifier.
. aArguments: procedure params, can be a integer, a JSON object, a list...

CancelCall: method called when the client wants cancel an active Call.
. aCallld: this is the UUID generated by client

Publish: The client will send an event to all clients connected to the server who have subscribed to the topicURI.

. TopicURI: channel name.
. Event: message text.
Events

OnWelcome: is the first server-to-client message sent by a WAMP server

. Sessionld: is a string that is randomly generated by the server and unique to the specific WAMP ses-
sion. The sessionld can be used for at least two situations: 1) specifying lists of excluded or eligible
clients when publishing event and 2) in the context of performing authentication or authorization.

. ProtocolVersion: is an integer that gives the WAMP protocol version the server speaks, currently it
MUST be 1.
. Serverldent: is a string the server may use to disclose it's version, software, platform or identity.

OnCallError: event fired when the remote procedure call could not be executed, an error or exception occurred
during the execution or the execution of the remote procedure finishes unsuccessfully for any other reason, the
server responds by sending a message with error details

. Callld: this is the ID generated by the client when requesting a call to a procedure
. ErrorURI: identifies the error.
. ErrorDesc: error description.

COMPONENTS

. ErrorDetails: application error details, is optional.

OncCallResult: event fired when the execution of the remote procedure finishes successfully, the server responds
by sending a message with the result.

Callld: this is the ID generated by client when request a call to a procedure
. Result: is the result, can be a number, a JSON object...

OnCallProgressResult: event fired when the execution of the remote procedure is in progress and there are still
more pending results.

. Callld: this is the ID generated by client when request a call to a procedure
. Result: is the result, can be a number, a JSON object...

OnEvent: event fired when the client receives PubSub events published by subscribers via the EVENT message.

. TopicURI: channel name where is subscribed.
. Event: message text.

COMPONENTS

Protocol WAMP Javascript

Here you can find available methods, you need to replace {%host%} and {%port%} variables as needed, example:
if you have configured your sgcWebSocket server to listen port 80 on www.example.com website you need to con-
figure:

<script src="http://www.example.com:80/sgcWebSockets.js"></script>
<script src="http://www.example.com:80/wamp.esegece.com.js"></script>

Open Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/wamp.esegece.com.js"></script>
<script>

var socket = new sgcws_wamp('ws://{%host%}:{%port%}"');
</script>

Send New Prefix

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/wamp.esegece.com.js"></script>
<script>
var socket = new sgcws_wamp('ws://{%host%}:{%port%}"');
socket.prefix('sgc', 'http://www.esegece.com');
</script>

Request RPC (Remote Procedure Call)

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/wamp.esegece.com.js"></script>
<script>
var socket = new sgcws_wamp('ws://{%host%}:{%port%}"');
socket.call('', 'sgc:CallTest', '20'")
</script>

Subscribe to a TopicURI

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>
<script>
var socket = new sgcws_wamp('ws://{%host%}:{%port%}"');
socket.subscribe('sgc:test)
</script>

COMPONENTS

UnSubscribe to a TopicURI

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>
<script>
var socket = new sgcws_wamp('ws://{%host%}: {%port%}"');
socket.unsubscribe('sgc:test)
</script>

Publish message

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>
<script>
var socket = new sgcws_wamp('ws://{%host%}:{%port%}"');
socket.publish('sgc:channel', 'Test Message', [], []);
</script>

Show Alert with Message Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/wamp.esegece.com.js"></script>
<script>
var socket = new sgcws('ws://{%host%}:{%port%}"');
socket.on('sgcmessage', function(event)
alert(event.message);

</script>

Show Alert OnCallResult or OnCallError

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/wamp.esegece.com.js"></script>
<script>
var socket = new sgcws_wamp('ws://{%host%}:{%port%}');
socket.on('wampcallresult', function(event)
alert('call result: ' + event.Callld + ' - ' + event.CallResult);
socket.on('wampcallprogressresult', function(event)
alert('call progress result: ' + event.Callld + ' - ' + event.CallResult);
socket.on('wampcallerror', function(event)

alert('call error: ' + event.Callld + ' - ' + event.ErrorURI + ' - ' + event.ErrorDesc +
' - ' + event.ErrorDetails);
}

</script>

Show Alert OnEvent

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>

COMPONENTS

<script>
var socket = new sgcws_wamp('ws://{%host%}:{%port%}"');
socket.on('wampevent', function(event)

alert('call result: ' + event.TopicURI + ' - ' + event.Event);

</script>

Show Alert OnConnect, OnDisconnect and OnError Events

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/wamp.esegece.com.js"></script>
<script>
var socket = new sgcws_wamp('ws://{%host%}:{%port%}"');
socket.on('open', function(event)

alert('sgcwebSocket Open!');
sécket.on('close', function(event)

alert('sgcWebSocket Closed!');
sécket.on('error', function(event)

alert('sgcwWebSocket Error: ' + event.message);
};

</script>

Close Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/wamp.esegece.com.js"></script>
<script>

socket.close();
</script>

Get Connection Status

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>
<script>

socket.state();
</script>

314

COMPONENTS

WAMP | Subscribers

A subscriber receives events by first providing topics (aka channels) he is interested. Subsequently, the subscriber
will receive any events publishes to that topic.
To receive events from a topic, first has to subscribe to this topic.

WAMP Client

procedure OnMessageEvent(Connection: TsgcWSConnection; const Text: string);
begin

ShowMessage(Text);
end;

oClient := TsgcWebSocketClient.Create(nil);
oClient.Host := '127.0.0.1';

oClient.Port := 80;

oClientWAMP := TsgcWSPClient_WAMP.Create(nil);
oClientWAMP.Client := oClient.
oClientWAMP.OnMessage := OnMessageEvent;
oClient.Active := True;

// Subscribe to topic after successful connect
oClient.Subscribe('myTopic');

WAMP Server

procedure OnSubscriptionEvent(Connection: TsgcWSConnection; const Subscription: string);

begin

ShowMessage('Subscribed: ' + Subscription);
end;
oServer := TsgcWebSocketServer.Create(nil);
oServer.Port := 80;
oServerWAMP := TsgcWSPServer_WAMP.Create(nil);
oServerWAMP.OnSubscription := OnSubscriptionEvent;
oServerwWAMP.Server := oServer;

oServerWAMP.Active := True;

COMPONENTS

WAMP | Publishers

A publisher sends (publishes) an event by providing a topic (aka channel) as the abstract address, not a specific
peer. Just call Publish method and pass as arguments the name of the topic and the message you want to send.
This message will be delivered to all subscribers of this topic. As a note, there is no need to subscribe to a topic to
publish messages on this topics.

There is no need to configure anything on server side, because messages are automatically broadcasted to clients
when a publish message is received.

WAMP Client

oClient := TsgcWebSocketClient.Create(nil);
oClient.Host '127.0.0.1";

oClient.Port 80;

oClientWAMP := TsgcWSPClient_WAMP.Create(nil);
oClientWAMP.Client := oClient.
oClientWAMP.OnMessage := OnMessageEvent;
oClient.Active := True;

// Publish a message to all subscribers
oClient.Publish('myTopic', 'Hello subscribers myTopic');

COMPONENTS

WAMP | Simple RPC

The most common use of WAMP component is client requests a method server and server sends response to
client. Client can send only the name of the method and/or can pass some parameters required by server to calcu-
late the result. Server processes requests and if successful sends a response to client with the result. If there is any
error, server sends an error response to client.

As you see, there is only One request and One response (successful or not).

Example: server has a method called GetTime, so every time a client requests this method, server returns server
time.

WAMP Server

procedure OnServerCall(Connection: TsgcWSConnection; const CallId, ProcUri, Arguments: string);

begin
if ProcUri = 'GetTime' then
oServerWAMP.CallResult(CallId, FormatDateTime('yyyymmdd hh:nn:ss', Now))
else
oServer .WAMP.CallError(CallId, 'Unknown method');
end;
oServer := TsgcWebSocketServer.Create(nil);
oServer.Port := 80;

oServerWAMP := TsgcWSPServer_WAMP.Create(nil);
oServerWAMP.0OnCall := OnServerCallEvent;
oServerWAMP.Server := oServer;

oServer.Active := True;

WAMP Client

procedure OnCallResultClient(Connection: TsgcWSConnection; CallId, Result: string);

begin
ShowMessage(Result);
end;
procedure OnCallErrorClient(Connection: TsgcWSConnection; const Error: string);
begin
ShowMessage(Error);
end;
oClient := TsgcWebSocketClient.Create(nil);
oClient.Host := '127.0.0.1"';

oClient.Port 80;

oClientWAMP := TsgcWSPClient_WAMP.Create(nil);
oClientWAMP.OnCallResult := OnCallResultClient;
oClientWAMP.OnCallError := OnCallErrorClient;
oClientwWAMP.Client := oClient;

oClient.Active := True;

// After client has connected, request GetTime from server
oClientWAMP.Call('GetTime');

317

COMPONENTS

WAMP | RPC Progress Results

Sometimes, Remote Produce Calls require more than one result to finish requests, by default WAMP 1.0 protocol
doesn't allow Partial results in a call, this is a feature only for sgcWebSockets library.

The flow is very similar to a simple RPC, but here there are 1 or more partial results before CallResult is called to
finish the process.

Basically, a client requests a procedure to server and server can send a result or an error. If send a result, this can
be the final result or it must send most results later. If it's final result, will call method CallResult and the process
will be finished. If there are more results to send, will call method CallProgressResult.

Example: client requests server a method to receive every second the server time and stop after 20 messages.

WAMP Server

procedure OnServerCall(Connection: TsgcWSConnection; const CallId, ProcUri, Arguments: string);
var
vNum: Integer;

begin
if ProcUri = 'GetProgressiveTime' then
begin
vNum := StrToInt(Arguments);
for i := 1 to vNum do
begin
if i = 20 then
oServerWAMP.CallResult(CallId, FormatDateTime('yyyymmdd hh:nn:ss', Now))
else
oServerWAMP.CallProgressiveResult(CallId, FormatDateTime('yyyymmdd hh:nn:ss', Now));
end
end
else
oServer.WAMP.CallError(CallId, 'Unknown method');
end;
oServer := TsgcWebSocketServer.Create(nil);
oServer.Port := 80;

oServerWAMP := TsgcWSPServer_WAMP.Create(nil);
oServerWAMP.0OnCall := OnServerCallEvent;
oServerWAMP.Server := oServer;

oServer.Active := True;

WAMP Client

procedure OnCallResultClient(Connection: TsgcWSConnection; CallId, Result: string);
begin

ShowMessage(Result);
end;

procedure OnCallProgressResultClient(Connection: TsgcWSConnection; CallId, Result: string);
begin

ShowMessage(Result);
end;

procedure OnCallErrorClient(Connection: TsgcWSConnection; const Error: string);
begin

ShowMessage(Error);
end;

oClient := TsgcWebSocketClient.Create(nil);

oClient.Host '127.0.0.1";

oClient.Port 80;

oClientWAMP := TsgcWSPClient_WAMP.Create(nil);
oClientWAMP.OnCallResult := OnCallResultClient;
oClientWAMP.OnCallProgressResult := OnCallProgressResultClient;
oClientWAMP.OnCallError := OnCallErrorClient;
oClientwWAMP.Client := oClient;

oClient.Active := True;

// After client has connected, request GetTime from server
oClientWAMP.Call('GetProgressTime');

COMPONENTS

COMPONENTS

Protocol WAMP 2

WAMP provides Unified Application Routing in an open WebSocket protocol that works with different languages.

Using WAMP you can build distributed systems out of application components which are loosely coupled and com-
municate in (soft) real-time.

At its core, WAMP offers two communication patterns for application components to talk to each other:
* Publish & Subscribe (PubSub)
* Remote Procedure Calls (RPC)

WAMP is easy to use, simple to implement and based on modern Web standards: WebSocket, JSON and URIs.

Components

TsgcWSPClient WAMP2: Client Protocol WAMP2 VCL Component.

COMPONENTS

TsgcWSPClient WAMP2

This is Client Protocol WAMP Component, you need to drop this component in the form and select a TsgcWeb-
SocketClient Component using Client Property.

Session Methods

ABORT: Both the Router and the Client may abort the opening of a WAMP session by sending an
ABORT message.

Reason MUST be an URI.
Details MUST be a dictionary that allows to provide additional, optional closing information
(see below).

No response to an ABORT message is expected.

GOODBYE: A WAMP session starts its lifetime with the Router sending a WELCOME message to the
Client and ends when the underlying transport disappears or when the WAMP session is closed ex-
plicity by a GOODBYE message sent by one Peer and a GOODBYE message sent from the other
Peer in response.

Reason MUST be a URI.
Details MUST be a dictionary that allows providing additional, optional closing information.

Publish/Subscribe Methods

PUBLISH: When a Publisher requests to publish an event to some topic, it sends a PUBLISH mes-
sage to a Broker:

Request is a random, ephemeral ID chosen by the Publisher and used to correlate the
Broker's response with the request.

Options is a dictionary that allows to provide additional publication request details in an exten-
sible way. This is described further below.

Topic is the topic published to.

Arguments is a list of application-level event payload elements. The list may be of zero length.
ArgumentsKw is an optional dictionary containing application-level event payload, provided as
keyword arguments. The dictionary may be empty.

If the Broker is able to fulfil and allowing the publication, the Broker will send the event to all current
Subscribers of the topic of the published event.

By default, publications are unacknowledged, and the Broker will not respond, whether the publication
was successful indeed or not.

SUBSCRIBE: A Subscriber communicates its interest in a topic to a Broker by sending a SUB-
SCRIBE message:

Request MUST be a random, ephemeral ID chosen by the Subscriber and used to correlate
the Broker's response with the request.

Options MUST be a dictionary that allows providing additional subscription request details in
an extensible way.

Topic is the topic the Subscriber wants to subscribe to and MUST be a URI.

UNSUBSCRIBE: When a Subscriber is no longer interested in receiving events for a subscription it
sends an UNSUBSCRIBE message

Request MUST be a random, ephemeral ID chosen by the Subscriber and used to correlate
the Broker's response with the request.

SUBSCRIBED.Subscription MUST be the ID for the subscription to unsubscribe from, origi-
nally handed out by the Broker to the Subscriber.

COMPONENTS

RPC Methods

. CALL: When a Caller wishes to call a remote procedure, it sends a CALL message to a Dealer:

Request is a random, ephemeral ID chosen by the Caller and used to correlate the Dealer's
response with the request.

Options is a dictionary that allows to provide additional call request details in an extensible
way. This is described further below.

Procedure is the URI of the procedure to be called.

Arguments is a list of positional call arguments (each of arbitrary type). The list may be of zero
length.

ArgumentsKw is a dictionary of keyword call arguments (each of arbitrary type). The dictio-
nary may be empty.

. REGISTERCALL: A Callee announces the availability of an endpoint implementing a procedure with
a Dealer by sending a REGISTER message:

Request is a random, ephemeral ID chosen by the Callee and used to correlate the Dealer's
response with the request.

Options is a dictionary that allows providing additional registration request details in a extensi-
ble way. This is described further below.

Procedure is the procedure the Callee wants to register

. UNREGISTERCALL: When a Callee is no longer willing to provide an implementation of the regis-
tered procedure, it sends an UNREGISTER message to the Dealer:

Request is a random, ephemeral ID chosen by the Callee and used to correlate the Dealer's
response with the request.

REGISTERED.Registration is the ID for the registration to revoke, originally handed out by
the Dealer to the Callee.

. INVOCATION: If the Dealer is able to fulfil (mediate) the call and it allows the call, it sends a INVOCA-
TION message to the respective Callee implementing the procedure:

Request is a random, ephemeral ID chosen by the Dealer and used to correlate the Callee's
response with the request.

REGISTERED.Registration is the registration ID under which the procedure was registered at
the Dealer.

Details is a dictionary that allows to provide additional invocation request details in an extensi-
ble way. This is described further below.

CALL.Arguments is the original list of positional call arguments as provided by the Caller.
CALL.ArgumentsKw is the original dictionary of keyword call arguments as provided by the
Caller.

. YIELD: If the Callee is able to successfully process and finish the execution of the call, it answers by
sending a YIELD message to the Dealer:

Events

INVOCATION.Request is the ID from the original invocation request.

Options is a dictionary that allows providing additional options.

Arguments is a list of positional result elements (each of arbitrary type). The list may be of ze-
ro length.

ArgumentsKw is a dictionary of keyword result elements (each of arbitrary type). The dictio-
nary may be empty.

OnWAMPSession: After the underlying transport has been established, the opening of a WAMP session is initiat-
ed by the Client sending a HELLo message to the Router

» Realm: is a string identifying the realm this session should attach to
+ Details: is a dictionary that allows to provide additional opening information

COMPONENTS

OnWAMPWelcome: A Router completes the opening of a WAMP session by sending a WELCOME reply mes-
sage to the Client.

+ Session: MUST be a randomly generated ID specific to the WAMP session. This applies for the
lifetime of the session.
+ Details: is a dictionary that allows to provide additional information regarding the open session.

OnWAMPChallenge: this event is raised when server requires client authenticate against server.

+ Authmethod: this is the authentication method requested by server, example: ticket.
* Details: optional
» Secret: here client can set secret key which will be used to authenticate.

Example: Authentication using ticket method.

// First OnWAMPSession event will be called asking details about new session, set realm and authentication
// which will be sent to serve

procedure OnWAMPSession(Connection: TsgcWSConnection;
var aRealm, aDetails: string);

begin

aRealm := 'realmi';

aDetails := '{"authmethods": ["ticket"], "authid": "joe"}';
end;

// If AuthId parameter is accepted by server, it will request an authentication through Challenge message,
// here you can set "secret key'" of "authid" param.

procedure OnWAMPChallenge(Connection:
TsgcwWSConnection; AuthMethod, Details: string; var Secret: string);
begin
Secret := 'your secret key';
end;

// If Authentication is successful, server will send a Welcome message

procedure OnWAMPWelcome(Connection: TsgcWSConnection;
SessionId: Int64; Details: string);
begin
ShowMessage('authenticated');
end;

OnWAMPADbort: Both the Router and the Client may abort the opening of a WAMP session by sending an ABORT
message.

* Reason: MUST be an URI.
+ Details: MUST be a dictionary that allows providing additional, optional closing information.

OnWAMPGoodBye: A WAMP session starts its lifetime with the Router sending a weLcove message to the Client
and ends when the underlying transport disappears or when the WAMP session is closed explicitly by a GOODBYE
message sent by one Peer and a coobsYE message sent from the other Peer in response.

* Reason: MUST be an URI.
+ Details: MUST be a dictionary that allows to provide additional, optional closing information.

COMPONENTS

OnWAMPSubscribed: If the Broker is able to fulfill and allow the subscription, it answers by sending a SUB-
SCRIBED message to the Subscriber

. SUBSCRIBE.Request: MUST be the ID from the original request.
. Subscription: MUST be an ID chosen by the Broker for the subscription.

OnWAMPUnNSubscribed: Upon successful unsubscription, the Broker sends an UNSUBSCRIBED message to the
Subscriber

. UNSUBSCRIBE.Request: MUST be the ID from the original request.

OnWAMPPublished: If the Broker is able to fulfll and allowing the publication, and
PUBLISH.Options.acknowledge == true, the Broker replies by sending a PUBLISHED message to the Publisher:

. PUBLISH.Request: is the ID from the original publication request.
. Publication: is a ID chosen by the Broker for the publication.

OnWAMPEvent: When a publication is successful and a Broker dispatches the event, it determines a list of re-
ceivers for the event based on Subscribers for the topic published to and, possibly, other information in the event.
Note that the Publisher of an event will never receive the published event even if the Publisher is also a Subscriber
of the topic published to. The Advanced Profile provides options for more detailed control over publication. When a
Subscriber is deemed to be a receiver, the Broker sends the Subscriber an EVENT message.

. SUBSCRIBED.Subscription: is the ID for the subscription under which the Subscriber receives the
event - the ID for the subscription originally handed out by the Broker to the Subscribe*.

. PUBLISHED.Publication: is the ID of the publication of the published event.

. DETAILS: is a dictionary that allows the Broker to provide additional event details in a extensible way.

. PUBLISH.Arguments: is the application-level event payload that was provided with the original publi-
cation request.

. PUBLISH.ArgumentKw: is the application-level event payload that was provided with the original

publication request.

OnWAMPETrror: When the request fails, the Broker sends an ERROR

METHOD: is the ID of the Method.

REQUEST.ID: is the ID of the Request.

DETAILS: is a dictionary that allows the Broker to provide additional event details in a extensible way.
ERROR: describes the message error.

PUBLISH.Arguments: is the application-level event payload that was provided with the original publi-
cation request.

. PUBLISH.ArgumentKw: is the application-level event payload that was provided with the original
publication request.

OnWAMPResult: The Dealer will then send a RESULT message to the original Caller:

CALL.Request: is the ID from the original call request.

DETAILS: is a dictionary of additional details.

YIELD.Arguments: is the original list of positional result elements as returned by the Callee.
YIELD.ArgumentsKw: is the original dictionary of keyword result elements as returned by the Callee.

OnWAMPRegistered: If the Dealer is able to fulfill and allowing the registration, it answers by sending a REGIS-
TERED message to the Callee:

. REGISTER.Request: is the ID from the original request.

. Registration: is an ID chosen by the Dealer for the registration.

OnWAMPUnNRegistered: When a Callee is no longer willing to provide an implementation of the registered proce-
dure, it sends an UNREGISTER message to the Dealer:

324

COMPONENTS

. Request: is a random, ephemeral ID chosen by the Callee and used to correlate the Dealer's re-
sponse with the request.
. REGISTERED.Registration: is the ID for the registration to revoke, originally handed out by the

Dealer to the Callee.

COMPONENTS

Protocol Default

This is default sub-protocol implemented using "JSONRPC 2.0" messages, every time you send a message using
this protocol, a JSON object is created with the following properties:

jsonrpc: A String specifying the version of the JSON-RPC protocol. MUST be exactly "2.0".

method: A String containing the name of the method to be invoked. Method names that begin with the word rpc fol-
lowed by a period character (U+002E or ASCII 46) are reserved for rpc-internal methods and extensions and
MUST NOT be used for anything else.

params: A Structured value that holds the parameter values to be used during the invocation of the method. This
member MAY be omitted.

id: An identifier established by the Client that MUST contain a String, Number, or NULL value if included. If it is not

included it is assumed to be a notification. The value SHOULD normally not be Null [1] and Numbers SHOULD
NOT contain fractional parts [2]

JSON object example:

{"jsonrpc": "2.0", "method": "subtract", "params": [42, 23], "id": 1}

Features

¢ Publish/subscribe message pattern to provide one-to-many message distribution and decou-
pling of applications. Supports Wildcard characters, so you can subscribe to a hierarchy of
channels. Example: if you want to subscribe to all channels which start with 'news’, then call
Subscribe('news*").

e A messaging transport that is agnostic to the content of the payload

e Acknowledgment of messages sent.

e Supports transactional messages through server local transactions. When the client com-
mits the transaction, the server processes all messages queued. If client rollback the transac-
tion, then all messages are deleted.

e Implements QoS (Quality of Service) for message delivery.

Components

TsgcWSPClient_sgc: Server Protocol Default VCL Component.
TsgcWSPClient_sgc: Client Protocol Default VCL Component.

Javascript Component: Client Javascript Reference.

Browser Test

If you want to test this protocol with your favourite Web Browser, please type this URL (you need to define your
custom host and port)

http://host:port/esegece.com.html

COMPONENTS

327

COMPONENTS

TsgcWSPServer _sgc

This is Server Protocol Default Component, you need to drop this component in the form and select a TsgcWeb-
SocketServer Component using Server Property.

Methods

Subscribe / UnSubscribe: subscribe/unsubscribe to a channel. Supports wildcard characters, so you can sub-
scribe to a hierarchy of channels. Example: if you want to subscribe to all channels which start with 'news', then call
Subscribe('news™).

Publish: sends a message to all subscribed clients. Supports wildcard characters, so you can publish to a hierar-
chy of channels. Example: if you want to send a message to all subscribers to channels which start with 'news’,
then call Publish('news™').

RPCResult: if a call RPC from the client is successful, the server will respond with this method.

RPCError: if a call RPC from the client it has an error, the server will respond with this method.

Broadcast: sends a message to all connected clients, if you need to broadcast a message to selected channels,
use Channel argument.

WriteData: sends a message to single or multiple selected clients.

Properties

RPCAuthentication: if enabled, every time a client requests an RPC, method name needs to be authenticated
against a username and password.

Methods: is a list of allowed methods. Every time a client sends an RPC first it will search if this method is de-
fined on this list, if it's not in this list, OnRPCAuthentication event will be fired.

Subscriptions: returns a list of active subscriptions.

UseMatchesMasks: if enabled, subscriptions and publish methods accepts wildcards, question marks... check
MatchesMask Delphi function to see all supported masks.

Events

OnRPCAuthentication: if RPC Authentication is enabled, this event is fired to define if a client can call this
method or not.

OnRPC: fired when the server receives an RPC from a client.
OnNotification: fired every server receive a Notification from a client.

OnBeforeSubscription: fired every time before a client subscribes to a custom channel. Allows denying a sub-
scription.

OnSubscription: fired every time a client subscribes to a custom channel.
OnUnSubscription: fired every time a client unsubscribes from a custom channel.

OnRawMessage: this event is fired before a message is processed by component.

COMPONENTS

COMPONENTS

TsgcWSPClient_sgc

This is Client Protocol Default Component, you need to drop this component in the form and select a TsgcWeb-
SocketClient Component using Client Property.

Methods

Publish: sends a message to all subscribed clients.

RPC: Remote Procedure Call, client request a method and response will be handled OnRPCResult or OnRPCEr-
ror events.

Notify: the client sends a notification to a server, this notification doesn't need a response.

Broadcast: sends a message to all connected clients, if you need to broadcast a message to selected channels,
use Channel argument.

WriteData: sends a message to a server. If you need to send a message to a custom
TsgcWSProtocol_Server_sgc, use "Guid" Argument. If you need to send a message to a single channel, use
"Channel" Argument.

Subscribe: subscribe client to a custom channel. If the client is subscribed, OnSubscription event will be fired.

Unsubscribe: unsubscribe client to a custom channel. If the client is unsubscribed, OnUnsubscription event will
be fired.

UnsubscribeAll: unsubscribe client from all subscribed channel. If the client is unsubscribed, OnUnsubscription
event will be fired for every channel.

GetSession: requests to server session id, data session is received OnSession Event.
StartTransaction: begins a new transaction.
Commit: server processes all messages queued in a transaction.

RollBack: server deletes all messages queued in a transaction.

Events

OnEvent: this event is fired every time a client receives a message from a custom channel.

OnRPCResult: this event is fired when the client receives a successful response from the server after a RPC is
sent.

OnRPCETrror: this event is fired when the client receives a error response from the server after an RPC is sent.

OnAcknowledgment: this event is fired when the client receives error an acknowledgment from the server that
message has been received.

OnRawMessage: this event is fired before a message is processed by the component.

OnSession: this event is fired after a successful connection or after a GetSession request.

COMPONENTS

Properties

Queue: disabled by default, if True all text/binary messages are not processed and queued until queue is dis-
abled.

QoS: Three "Quality of Service" provided:

Level 0: "At most once", the message is delivered according to the best efforts of the underlying TCP/IP net-
work. A response is not expected and no retry semantics are defined in the protocol. The message arrives at
the server either once or not at all.

Level 1: "At least once", the receipt of a message by the server is acknowledged by an ACKNOWLEDG-
MENT message. If there is an identified failure of either the communications link or the sending device, or
the acknowledgement message is not received after a specified period of time, the sender resends the mes-
sage. The message arrives at the server at least once. A message with QoS level 1 has an ID param in the
message.

Level 2: "Exactly once", where message are assured to arrive exactly once. This level could be used, for ex-
ample, with billing systems where duplicate or lost messages could lead to incorrect charges being applied.
If there is an identified failure of either the communications link or the sending device, or the acknowledge-
ment message is not received after a specified period of time, the sender resends the message.

Subscriptions: returns a list of active subscriptions.

COMPONENTS

TsgcIWWSPClient_sgc

This is Intraweb Client Protocol Default Component, you need to drop this component in the form and select a Tsg-
clWWebSocketClient Component using Client Property.

Methods

WriteData: sends a message to a server. If you need to send a message to a custom
TsgcWSProtocol_Server_sgc, use "Guid" Argument. If you need to send a message to a single channel, use
"Channel" Argument.

Subscribe: subscribe client to a custom channel. If the client is subscribed, OnSubscription event will be fired.

Unsubscribe: unsubscribe client to a custom channel. If client is unsubscribed, OnUnsubscription event will be
fired.

COMPONENTS

Protocol Default Javascript

Default Protocol Javascript sgcWebSockets uses sgcWebSocket.js and esegece.com.js files.

Here you can find available methods, you need to replace {%host%} and {%port%} variables as needed, example:
if you have configured your sgcWebSocket server to listen port 80 on www.example.com website you need to con-
figure:

<script src="http://www.example.com:80/sgcwWebSockets.js"></script>
<script src="http://www.example.com:80/esegece.com.js"></script>

Open Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/esegece.com.js"></script>
<script>

var socket = new sgcws('ws://{%host%}:{%port%}"');
</script>

Send Message

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/esegece.com.js"></script>
<script>
var socket = new sgcws('ws://{%host%}:{%port%}');
socket.send('Hello sgcWebSockets!');
</script>

Show Alert with Message Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/esegece.com.js"></script>
<script>
var socket = new sgcws('ws://{%host%}:{%port%}"');
socket.on('sgcmessage', function(event)
{
alert(event.message);

}

</script>

Publish Message to test channel

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/esegece.com.js"></script>
<script>
var socket = new sgcws('ws://{%host%}:{%port%}');
socket.publish('Hello sgcwWebSockets!', 'test');
</script>

COMPONENTS

Show Alert with Event Message Received

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/esegece.com.js"></script>
<script>
var socket = new sgcws('ws://{%host%}:{%port%}');
socket.on('sgcevent', function(event)

alert('channel:' + event.channel + '. message: ' + event.message);

}

</script>

Call RPC

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/esegece.com.js"></script>
<script>

var socket = new sgcws('ws://{%host%}:{%port%}');

var params = {param:10};

socket.rpc(GUID(), 'test', JSON.stringify(params));
</script>

Handle RPC Response

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/esegece.com.js"></script>
<script>
var socket = new sgcws('ws://{%host%}:{%port%}');
socket.on('sgcrpcresult', function(event)

alert('result:' + event.result);
socket.on('sgcrpcerror', function(event)

alert('error:' + event.code + ' ' + event.message);

}

</script>

Call Notify

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/esegece.com.js"></script>
<script>

var socket = new sgcws('ws://{%host%}:{%port%}');

var params = {param:10};

socket.notify('test', JSON.stringify(params));
</script>

Send Messages in a Transaction

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/esegece.com.js"></script>
<script>

var socket = new sgcws('ws://{%host%}:{%port%}');

socket.starttransaction('sgc:test');
socket.publish('Messagel', 'sgc:test');
socket.publish('Message2', 'sgc:test');

334

COMPONENTS

socket.publish('Message3', 'sgc:test');
socket.commit('sgc:test');
</script>

Show Alert OnSubscribe or OnUnSubscribe to a channel

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/esegece.com.js"></script>
<script>
var socket = new sgcws('ws://{%host%}:{%port%}"');
socket.on('sgcsubscribe', function(event)

alert('subscribed: ' + event.channel);
socket.on('sgcunsubscribe', function(event)

alert('unsubscribed: ' + event.channel);

}

</script>

Show Alert OnConnect, OnDisconnect and OnError Events

<script src="http://{%host%}: {%port%}/sgcwebSockets.js"></script>
<script src="http://{%host%}:{%port%}/esegece.com.js"></script>
<script>
var socket = new sgcws('ws://{%host%}:{%port%}');
socket.on('open', function(event)

alert('sgcwWebSocket Open!');
sécket.on('close', function(event)

alert('sgcwebSocket Closed!');
iécket.on('error', function(event)

alert('sgcWebSocket Error: ' + event.message);

r
</script>

Get Session

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/esegece.com.js"></script>
<script>
var socket = new sgcws('ws://{%host%}:{%port%}');
socket.on('sgcsession', function(event)

alert(event.guid);
};
socket.getsession();
</script>

Close Connection

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/esegece.com.js"></script>
<script>

socket.close();
</script>

COMPONENTS

Get Connection Status

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/esegece.com.js"></script>
<script>

var socket = new sgcws('ws://{%host%}:{%port%}');

socket.state();
</script>

Set QoS

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/esegece.com.js"></script>
<script>

var socket = new sgcws('ws://{%host%}:{%port%}');

socket.qoslevell();
socket.publish('message', 'channel');
</script>

Set Queue Level

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/esegece.com.js"></script>
<script>

var socket = new sgcws('ws://{%host%}:{%port%}"');

socket.queuelevel2();

socket.publish('messagel', 'channell');

socket.publish('message2', 'channell');
</script>

COMPONENTS

Protocol Dataset

This protocol inherits from Protocol Default and it's useful if you want to broadcast dataset changes over clients
connected to this protocol. It can be used in 2 modes:

1. Replicate database: the database changes are replicated to all client databases, example: a server has a data-
base with stock quotes and all connected clients receive quotes changes. There is a single database (in server)
and every client has his own database. Every time a quote is updated, this change is broadcasted to all connected
clients and every client update his own record database. Use UpdateMode: upWhereAll or upWhereChanged for
this mode type.

2. Database updates: here there is a single database shared by server and clients, and every time there is a client

that updates a record in a database, all other clients want to be notified about this update. Use UpdateMode: upRe-
freshAll for this mode.

Most common uses

* Update Mode
* How Replicate Table
* How Notify Updates

It uses "JSON-RPC 2.0" Object, and every time there is a dataset change, it sends all field values (* only fields sup-
ported) using Dataset Object.

To allow the component to search records on the dataset, you need to specify which fields are the Key, example: if
in your dataset, ID field is the key you will need to write a code like this

procedure OnAfterOpenDataSet(DataSet: TDataSet);
begin
DataSet.FieldByName('ID').ProviderFlags :=
Dataset.FieldByName('ID').ProviderFlags + [pfInKey];
end;

Components

TsgcWSPServer_Dataset: Server Protocol Dataset VCL Component.
TsgcWSPClient_Dataset: Client Protocol Dataset VCL Component.

Javascript Component: Client Javascript Reference.

Browser Test

If you want to test this protocol with your favourite Web Browser, please type this URL (you need to define your
custom host and port)

http://host:port/dataset.esegece.com.html

337

COMPONENTS

TsgcWSPServer Dataset

This is Server Protocol Dataset Component, you need to drop this component in the form and select a TsgcWeb-
SocketServer Component using Server Property and select a Dataset Component using Dataset Property.

This component inherits from TsgcWSProtocol_Server_sgc all methods and properties.

Properties

ApplyUpdates: if enabled, every time the server receives a dataset update from client, it will be saved on the
server side.

NotifyUpdates: if enabled, every time dataset server changes, server broadcasts this change to all connected
clients.

NotifyDeletes: if enabled, every time a record is deleted, server broadcasts this to all connected clients.

AutoEscapeText: if enabled (disabled by default), automatically escape/unescape characters inside field values
Iike |l{ll7 Il[ll-“

AutoSynchronize: if enabled, every time a client connects to the server, the server will send metadata and all
dataset records to client.

FormatSettings: allows to set the format of double and datetime fields (to avoid conflicts between diffferent for-
mat settings of peers). This format must be the same for server and clients.

. DecimalSeparator: ","
. ThousandSeparator: "."
. DateSeparator: "/"
. TimeSeparator: ""
. ShortDateFormat: "dd/mm/yyyy hh:nn:ss:zzz"
UpdateMode:
. upWhereAll: (by default) all fields are broadcasted to clients,
. upWhereChanged: only Fields that have changed will be broadcasted to connected clients.
. upRefreshAll: dataset is refreshed to get the latest changes.
Methods

BroadcastRecord: sends dataset record values to all connected clients.
MetaData: sends metadata info to a client.

Synchronize: sends all dataset records to a client.

Events

These events are specific on the dataset protocol.
OnAfterDeleteRecord: event fired after a record is deleted from Dataset.
OnAfterNewRecord: event fired after a record is created on Dataset.
OnAfterUpdateRecord: event fired after a record is updated on Dataset.

OnBeforeDeleteRecord: event fired before a record is deleted from Dataset. If Argument "Handled" is True,
means that the user handles this event and if won't be deleted (by default this argument is False)

COMPONENTS

OnBeforeNewRecord: event fired before a record is created on Dataset. If Argument "Handled" is True, means
that the user handles this event and if won't be inserted (by default this argument is False)

OnBeforeUpdateRecord: event fired before a record is updated on Dataset. If Argument "Handled" is True,
means that the user handles this event and if won't be updated (by default this argument is False)

OnBeforeDatasetUpdate: event fired before a dataset record is updated.

COMPONENTS

TsgcWSPClient_Dataset

This is Client Protocol Dataset Component, you need to drop this component in the form and select a TsgcWeb-
SocketClient Component using Client Property and select a Dataset Component using Dataset Property.

This component inherits from TsgcWSProtocol_Client_sgc all methods and properties.

Methods

Subscribe_all: subscribe to all available channels
new: fired on new dataset record.
update: fired on post dataset record.
delete: fired on delete dataset record.

Synchronize: requests all dataset records from the server

GetMetaData: requests all dataset fields from server

Events

These events are specific on the dataset protocol.
OnAfterDeleteRecord: event fired after a record is deleted from Dataset.
OnAfterNewRecord: event fired after a record is created on Dataset.
OnAfterUpdateRecord: event fired after a record is updated on Dataset.
OnAfterSynchronize: event fired after synchronization has ended.

OnBeforeDeleteRecord: event fired before a record is deleted from Dataset. If Argument "Handled" is True,
means that the user handles this event and if won't be deleted (by default this argument is False)

OnBeforeNewRecord: event fired before a record is created on Dataset. If Argument "Handled" is True, means
that user the handles this event and if won't be inserted (by default this argument is False)

OnBeforeUpdateRecord: event fired before a record is updated on Dataset. If Argument "Handled" is True,
means that user the handles this event and if won't be updated (by default this argument is False)

OnBeforeSynchronization: event fired before a synchronization starts.

OnMetaData: event fired after a GetMetaData request. Example:

procedure OnMetaData(Connection: TsgcWSConnection; const JSON: TsgcObjectJSON);
var

i: integer;

vFieldName, vDataType: string;

vDataSize: Integer;

vKeyField: Boolean;
begin

for i:= 0 to JSON.Count -1 do

begin

vFieldName := JSON.Item[i].Node['fieldname'].Value;

vDataType := JSON.Item[i].Node['datatype'].Value;
vDataSize := JSON.Item[i].Node['datasize'].Value;
vKeyField := JSON.Item[i].Node['keyfield'].Value;

COMPONENTS

end;
end;

Properties

AutoSubscribe: enabled by default, if True, client subscribes to all available channels after successful connec-
tion.

ApplyUpdates: if enabled, every time the client receives a dataset update from server, it will be saved on the
client side.

AutoEscapeText: if enabled (disabled by default), automatically escape/unescape characters inside field values
Iike ll{ll7 ll[ll"-

NotifyUpdates: if enabled, every time dataset client changes, it sends a message to server notifying this change.

FormatSettings: allows to set the format of double and datetime fields (to avoid conflicts between diffferent for-
mat settings of peers). This format must be the same for server and clients.

. DecimalSeparator: ","
. ThousandSeparator: "."
. DateSeparator: "/"
. TimeSeparator: ""
. ShortDateFormat: "dd/mm/yyyy hh:nn:ss:zzz"
UpdateMode:
. upWhereAll: (by default) all fields are transmitted to the server,
. upWhereChanged: only Fields that have changed will be transmitted to the server.

. upRefreshAll: dataset is refreshed to get the latest changes.

COMPONENTS

TsgcIWWSPClient Dataset

This is Intraweb Client Protocol Dataset Component, you need to drop this component in the form and select a Tsg-
clWWebSocketClient Component using Client Property and select a Dataset Component using Dataset Property.

This component inherits from TsgclWWSPClient_sgc all methods and properties.

Methods

Subscribe_New: fired on new dataset record
Subscribe_Update: fired on post dataset record
Subscribe_Delete: fired on delete dataset record

COMPONENTS

Protocol Dataset Javascript

Dataset Protocol Javascript sgcWebSockets uses sgcWebSocket.js and dataset.esegece.com.js files.

Here you can find available methods, you need to replace {%host%} and {%port%} variables as needed, example:
if you have configured your sgcWebSocket server to listen port 80 on www.example.com website you need to con-
figure:

<script src="http://www.example.com:80/sgcwWebSockets.js"></script>
<script src="http://www.example.com:80/dataset.esegece.com.js"></script>

Open Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/dataset.esegece.com.js"></script>
<script>

var socket = new sgcws_dataset('ws://{%host%}:{%port%}"');
</script>

Send Message

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/dataset.esegece.com.js"></script>
<script>
var socket = new sgcws_dataset('ws://{%host%}:{%port%}');
socket.send('Hello sgcWebSockets!');
</script>

Show Alert with Message Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/dataset.esegece.com.js"></script>
<script>

var socket = new sgcws('ws://{%host%}:{%port%}"');

socket.on('sgcdataset', function(event)

{

alert(event.dataset);

}

</script>

Show Alert with Dataset Received

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>
<script>
var socket = new sgcws_dataset('ws://{%host%}:{%port%}');
socket.on('sgcmessage', function(event)

alert(event.message);

COMPONENTS

}

</script>

Show Alert OnSubscribe or OnUnSubscribe to a channel

<script src="http://{%host%}: {%port%}/sgcwebSockets.js"></script>
<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>
<script>
var socket = new sgcws_dataset('ws://{%host%}:{%port%}');
socket.on('sgcsubscribe', function(event)

alert('subscribed: ' + event.channel);
socket.on('sgcunsubscribe', function(event)
alert('unsubscribed: ' + event.channel);

</script>

Show Alert OnConnect, OnDisconnect and OnError Events

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/dataset.esegece.com.js"></script>
<script>
var socket = new sgcws_dataset('ws://{%host%}:{%port%}');
socket.on('open', function(event)

alert('sgcwebSocket Open!');
Y

socket.on('close', function(event)
alert('sgcWebSocket Closed!');

sécket.on('error', function(event)
alert('sgcwWebSocket Error: ' + event.message);

’
</script>

Subscribe All Dataset Changes

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/dataset.esegece.com.js"></script>
<script>

socket.subscribe_all();
</script>

UnSubscribe All Dataset Changes

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/dataset.esegece.com.js"></script>
<script>

socket.unsubscribe_all();
</script>

344

COMPONENTS

Handle Dataset Changes

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>
<script>

var socket = new sgcws_dataset('ws://{%host%}:{%port%}"');

socket.on('sgcdataset', function(evt){

if ((evt.channel == "sgc@dataset@new") || (evt.channel == "sgc@dataset@update")) {
. here you need to implement your own code insert/update records ...

ilse if (evt.channel == "sgc@dataset@delete") {
. here you need to implement your own code to delete records ...

}
1)

</script>

Close Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/dataset.esegece.com.js"></script>
<script>

socket.close();
</script>

Get Connection Status

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>
<script>

socket.state();
</script>

345

COMPONENTS

Protocol Dataset | Replicate Table

This mode tries to solve a common scenario where a table is replicated for all connected clients, example, if you
have a server with a stock quotes table, you want broadcast stock changes to all clients, but you don't want
that a client can connect to your database. So, every time there is a change in any stock quotes, the record infor-
mation will be broadcasted to all connected clients. Every client will read the record and update his own table.

You can check in Demos folder, SQLLite/MultipleDatabase demo.

Configure Dataset Server

Create a new Dataset Protocol Server and configure using the following properties

+ ApplyUpdates: set to True, every time there is a change, this will be broadcasted to clients

» AutoSynchronize: set to True, every time a new client connects to server, server will send all records
(metadata and data), so client will get latest information from server.

+ UpdateMode: set to upWhereAll or upWhereChanged. The difference is the first send all fields of a record
and second only fields changed in a update.

oServer := TsgcWebSocketServer.Create(nil);
oProtocolDataset := TsgcWSPServer_Dataset.Create(nil);
oProtocolDataset.Server := oServer;
oProtocolDataset.Dataset := <...your dataset..>;
oProtocolDataset.ApplyUpdates := true;
oProtocolDataset.AutoSynchronize := true;
oProtocolDataset.NotifyUpdates := true;
oProtocolDataset.UpdateMode := upWhereAll;
oServer.Port := 80;

oServer.Active := true;

Configure Dataset Client

Create a new Dataset Protocol Client and configure using the following properties

+ ApplyUpdates: set to True, every time there is a change, this will be sent to server.

» AutoSubscribe: set to True, every time a new client connects to server, client subscribe automatically to
update, delete and new record.

+ UpdateMode: set to upWhereAll or upWhereChanged. The difference is the first send all fields of a record
and second only fields changed in a update.

oClient := TsgcWebSocketClient.Create(nil);
oProtocolDataset := TsgcWSPClient_Dataset.Create(nil);
oProtocolDataset.Client := oClient;
oProtocolDataset.Dataset := <...your dataset..>;
oProtocolDataset.ApplyUpdates := true;
oProtocolDataset.AutoSubscribe := true;
oProtocolDataset.NotifyUpdates := true;
oProtocolDataset.UpdateMode := upWhereAll;
oClient.Host := '127.0.0.1"';

oClient.Port 80;

oClient.Active := true;

COMPONENTS

Protocol Dataset | Notify Updates

This mode tries to solve an scenario where server and clients share a single database (server and clients are
connected to the same physical database) and clients want to be notified every time other client has done any
change on a dataset.

You can check in Demos folder, SQLLite/SingleDatabase demo.

Configure Dataset Server

Create a new Dataset Protocol Server and configure using the following properties

+ ApplyUpdates: set to True, every time there is a change, this will be broadcasted to clients

+ AutoSynchronize: set to False, here is not needed to set to true, because client is connected to the same
database than server.

* UpdateMode: set to upRefreshAll.

oServer := TsgcWebSocketServer.Create(nil);
oProtocolDataset := TsgcWSPServer_Dataset.Create(nil);
oProtocolDataset.Server := oServer;
oProtocolDataset.Dataset := <...your dataset..>;
oProtocolDataset.ApplyUpdates := true;
oProtocolDataset.AutoSynchronize := false;
oProtocolDataset.NotifyUpdates := true;
oProtocolDataset.UpdateMode := upRefreshAll;
>oServer.Port := 80;

oServer.Active := true;

Configure Dataset Client

Create a new Dataset Protocol Client and configure using the following properties

+ ApplyUpdates: set to True, every time there is a change, this will be sent to server.

» AutoSubscribe: set to True, every time a new client connects to server, client subscribe automatically to
update, delete and new record.

* UpdateMode: set to upRefreshAll.

oClient := TsgcWebSocketClient.Create(nil);
oProtocolDataset := TsgcWSPClient_Dataset.Create(nil);
oProtocolDataset.Client := oClient;
oProtocolDataset.Dataset := <...your dataset..>;
oProtocolDataset.ApplyUpdates := true;
oProtocolDataset.AutoSubscribe := true;
oProtocolDataset.NotifyUpdates := true;
oProtocolDataset.UpdateMode := upRefreshAll;

oClient.Host := '127.0.0.1"';
oClient.Port := 80;
oClient.Active := true;

347

COMPONENTS

Protocol Files

This protocol allows sending files using binary WebSocket transport. It can handle big files with a low memory us-
age.
Features

e Publish/subscribe message pattern to provide one-to-many message distribution and decou-
pling of applications.

¢ Acknowledgment of messages sent.
e Implements QoS (Quality of Service) for file delivery.
e Optionally can request Authorization for files received.
¢ Low memory usage.
Components

TsgcWSPServer_Files: Server Protocol Files VCL Component.

TsgcWSPClient_Files: Client Protocol Files VCL Component.

Classes

TsgcWSMessageFile: the object which encapsulates file packet information.

Most common uses

¢ Send Files
* How Send Files To Server
* How Send Files To Clients
* Big Files
» How Send Big Files

COMPONENTS

TsgcWSPServer Files

This is the Server Files Protocol Component, you need to drop this component in the form and select a TsgcWeb-
SocketServer Component using Server Property.

Methods

SendFile: sends a file to a client, you can set the following parameters
aSize: size of every packet in bytes.
aData: user custom data, here you can write any text you think is useful for client.
aChannel: if you only want to send data to all clients subscribed to this channel.
aQoS: type of quality of service.
aFileld: if empty, will be set automatically.

BroadcastFile: sends a file to all connected clients. You can set several parameters:
aSize: size of every packet in bytes.
aData: user custom data, here you can write any text you think is useful for client.
aChannel: if you only want to send data to all clients subscribed to this channel.
aExclude: connection guids separated by a comma, which you don't want to send this file.
alnclude: connection guids separated by a comma, which you want to send this file.

aQoS: type of quality of service.
aFileld: if empty, will be set automatically.

Properties

Files: files properties.
BufferSize: default size of every packet sent, in bytes.
SaveDirectory: the directory where all files will be stored.
QoS: quality of service
Interval: interval to check if a qosLevel2 message has been sent.
Level: level of quality of service.
qoslLevel0: the message is sent.

qoslLevell: the message is sent and you get an acknowledgment if the message has been
processed.

qoslLevel2: the message is sent, you get an acknowledgment if the message has been processed
and packets are requested by the receiver.

Timeout: maximum wait time.

ClearReceivedStreamsOnDisconnect: if disabled, when reconnects, try to resume file download for qosLevel2,
by default is enabled.

ClearSentStreamsOnDisconnect: tif disabled, when reconnects, try to resume file upload for qosLevel2, by de-
fault is enabled.

COMPONENTS

Events

OnFileBeforeSent: fired before a file is sent. You can use this event to check file data before is sent.
OnFileReceived: fired when a file is successfully received.

OnFileReceivedAuthorization: fired to check if a file can be received.

OnFileReceivedError: fired when an error occurs receiving a file.

OnFileReceivedFragment: fired when a fragment file is received. Useful to show progress.
OnFileSent: fired when a file is successfully sent.

OnFileSentAcknowledgment: fired when a fragment is sent and the receiver has processed.

OnFileSentError: fired when an error occurs sending a file.

OnFileSentFragment: fired when a fragment file is sent. Useful to show progress.

COMPONENTS

TsgcWSPClient Files

This is the Server Files Protocol Component, you need to drop this component in the form and select a TsgcWeb-
SocketClient Component using Client Property.

Methods

SendFile: sends a file to the server, you can set the following parameters
aSize: size of every packet in bytes.
aData: user custom data, here you can write any text you think is useful for the server.
aQosS: type of quality of service.
aFileld: if empty, will be set automatically.

Properties
Files: files properties
BufferSize: default size of every packet sent, in bytes.
SaveDirectory: the directory where all files will be stored.
QoS: quality of service
Interval: interval to check if a qosLevel2 message has been sent.
Level: level of quality of service.
qoslLevel0: the message is sent.

qoslLevell: the message is sent and you get an acknowledgment if the message has been
processed.

qoslLevel2: the message is sent, you get an acknowledgment if the message has been processed
and packets are requested by the receiver.

Timeout: maximum wait time.

ClearReceivedStreamsOnDisconnect: if disabled, when reconnects, try to resume file download for qosLevel2,
by default is enabled.

ClearSentStreamsOnDisconnect: tif disabled, when reconnects, try to resume file upload for qosLevel2, by de-
fault is enabled.

Events

OnFileBeforeSent: fired before a file is sent. You can use this event to check file data before is sent.
OnFileReceived: fired when a file is successfully received.

OnFileReceivedAuthorization: fired to check if a file can be received.

OnFileReceivedError: fired when an error occurs receiving a file.

OnFileReceivedFragment: fired when a fragment file is received. Useful to show progress.

OnFileSent: fired when a file is successfully sent.

COMPONENTS

OnFileSentAcknowledgment: fired when a fragment is sent and the receiver has processed.

OnFileSentError: fired when an error occurs sending a file.

OnFileSentFragment: fired when a fragment file is sent. Useful to show progress.

COMPONENTS

TsgcWSMessageFile

This object is passed as a parameter every time a file protocol event is raised.

Properties

BufferSize: default size of the packet.

Channel: if specified, this file only will be sent to clients subscribed to specific channel.
Method: internal method.

Fileld: identifier of a file, is unique for all files received/sent.
Data: user custom data. Here the user can set whatever text.
FileName: name of the file.

FilePosition: file position in bytes.

FileSize: Total file size in bytes.

Id: identifier of a packet, is unique for every packet.

QoS: quality of service of the message.

Streaming: for internal use.

Text: for internal use.

COMPONENTS

Protocol Files | How Send Files To Server

To send a File to Server, just call the method SendFile of Files Protocol and pass the full FileName as argument.
The file received by server, will be saved by default in the same directory where is the server executable or in the
Path set in the Files.SaveDirectory property.

// ... Create Server

oServer := TsgcWebSocketServer.Create(nil);
oServer_Files := TsgcWSPServer_Files.Create(nil);
oServer_Files.Server := oServer;

oServer.Host := '127.0.0.1"';

oServer.Port := 8080;

// ... Create Client
oClient := TsgcWebSocketClient.Create(nil);
oClient.URL := 'ws://127.0.0.1:8080';

// ... Create Protocol
oClient_Files := TsgcWSPClient_Files.Create(nil);
oClient_Files.Client := oClient;

// ... Start Server
oServer.Active := True;
// ... Connect client and Send File

if oClient.Connect() then
oClient_Files.SendFile('c:\Documents\yourfile.txt');

354

COMPONENTS

Protocol Files | How Send Files To Clients

To send a File to a Client, just call the method SendFile of Files Protocol and pass the Guid of the Connection and
the full FileName as argument. The Guid of the client connection can be captured OnConnect event of Server Pro-
tocol Files.

The file received by client, will be saved by default in the same directory where is the client executable or in the
Path set in the Files.SaveDirectory property.

// ... capture the guid of the client connection to send later the file
procedure OnConnectEvent(Connection: TsgcWSConnection);
begin

FGuid := Connection.Guid;
end;
// ... Create Server
oServer := TsgcWebSocketServer.Create(nil);
oServer_Files := TsgcWSPServer_Files.Create(nil);
oServer_Files.Server := oServer;
oServer_Files.OnConnect := OnConnectEvent;
oServer.Host := '127.0.0.1';
oServer.Port := 8080;
// ... Create Client
oClient := TsgcWebSocketClient.Create(nil);
oClient.URL := 'ws://127.0.0.1:8080';
// ... Create Protocol
oClient_Files := TsgcWSPClient_Files.Create(nil);
oClient_Files.Client := oClient;
// ... Start Server and Connect Clients
oServer.Active := True;

oClient.Connect();

// ... Send File to the client connected
oServer_Files.SendFile(FConnection.Guid, 'c:\Documents\yourfile.txt');

COMPONENTS

Protocol Files | How Send Big Files

When you want to send big files to Server or Client, for example a File of some Gigabytes, you can experience
some memory problems trying to load the full file. The Protocol Files allows to send the files in smaller packets that
when received by other peer are reassembled in a single file. Just use the Size parameter of SendFile method to
set the Size in Bytes of every single packet.

// ... Create Server

oServer := TsgcWebSocketServer.Create(nil);
oServer_Files := TsgcWSPServer_Files.Create(nil);
oServer_Files.Server := oServer;

oServer.Host := '127.0.0.1"';

oServer.Port := 8080;

// ... Create Client
oClient := TsgcWebSocketClient.Create(nil);
oClient.URL := 'ws://127.0.0.1:8080';

// ... Create Protocol
oClient_Files := TsgcWSPClient_Files.Create(nil);
oClient_Files.Client := oClient;

// ... Start Server
oServer.Active := True;
// ... Connect client and Send File in packets of 100000 bytes
if oClient.Connect() then
oClient_Files.SendFile('c:\Documents\yourfile.txt', 100000, gosLevel®, '');

COMPONENTS

Protocol Presence

Presence protocol allows to know who is subscribed to a channel, this makes more easy to create chat applications
and know who is online, example: game users, chat rooms, users viewing the same document...

Features

e By default user is identified by a name, but this can be customized passing more data: email, company,
twitter...

Events to Authorize if a Channel can be created, if a member is allowed...

Every time a new member joins a channel, all members are notified.

Publish messages to all channel subscribers.

Low memory usage.

Components

TsgcWSPServer_Presence: Server Protocol Presence VCL Component.

TsgcWSPClient_Presence: Client Protocol Presence VCL Component.

Classes

TsgcWSPresenceMessage: the object which encapsulates presence packet information.

357

COMPONENTS

TsgcWSPServer Presence

This is Server Presence Protocol Component, you need to drop this component in the form and select a TsgcWeb-
SocketServer Component using Server Property.

Methods

All methods are handled internally by the server in response to client requests.

Properties

You must link this component to a Server or to a Broker if you are using more than one protocol.

EncodeBase64: by default is disabled, string values are encoded in base64 to avoid problems with JSON
encoding.

Acknowledgment: if enabled, every time a server sends a message to client assign an ID to this message
and queues in a list. When the client receives a message, if detect it has an ID, it sends an Acknowledgment
to the server, which means the client has processed message and server can delete from the queue.

. Interval: interval in seconds where server checks if there are messages not processed by
client.
. Timeout: maximum wait time before the server sends the message again.
Methods

» Broadcast: use the method broadcast to send a message to all connected clients using this protocol
or to a clients subscribed to a specific channel.

Events

There are several events to handle actions like: a new member request to join a channel, a new channel is
created by a member, a member unsubscribes from a channel...

New Member
// When a new client connects to a server, first sends member data to the server to request a new member.
// Following events can be called:

// OnBeforeNewMember :

// Server receives a request from the client to join and the server accepts or not this member.
// Use Accept parameter to allow or not this member.

// By default all members are accepted.

procedure OnBeforeNewMember (aConnection: TsgcWSConnection; const aMember: TsgcWSPresenceMember;
var Accept: Boolean);

begin
if aMember.Name = 'Spam' then
Accept := False;
end;

// OnNewMember :
// After a new member is accepted, then this event is called and means this member has join member list. You can
// Data property to store objects in memory like database access, session objects...

procedure OnNewMember (aConnection: TsgcWSConnection; const aMember: TsgcWSPresenceMember);
begin

end;

Subscriptions

COMPONENTS

// When a client has joined as a member, can subscribe to new channels, if a channel not exists,
// the following events can be called:

// OnBeforeNewChannel:

// Server receives a subscription request from the client to join this channel but the channel doesn't exist,
// the server can accept or not to create this channel. Use Accept parameter to allow or not this channel.
// By default, all channels are accepted.

procedure OnBeforeNewChannelBeforeNewChannel(Connection: TsgcWSConnection; const aChannel: TsgcWSPresenceChannel;
const aMember: TsgcWSPresenceMember; var Accept: Boolean)

begin
if aChannel.Name = 'Spam' then
Accept := False;
end;

// OnNewChannel: After a new channel is accepted, then this event is called and means a new channel has been crec
// Channel properties can be customized in this event.

procedure OnNewChannel(Connection: TsgcWSConnection; var aChannel: TsgcWSPresenceChannel);
begin

end;

// If the channel already exists or has been created, the server can accept or no new subscriptions.

// OnBeforeNewChannelMembers :

// Server receives a subscription request from a client to join this channel, the server can accept or not a memt

// Use Accept parameter to allow or not this member. By default, all members are accepted.

procedure OnBeforeNewChannelMember (Connection: TsgcWSConnection; const aChannel: TsgcWSPresenceChannel; const aMe
var Accept: Boolean)

begin
if aMember.Name = 'John' then
Accept := True
else if aMember.Name = 'Spam' then
Accept := False;
end;

// OnNewChannelMember :
// After a new member is accepted, then this event is called and means a new member has joined the channel.
// All subscribers to this channel, will be notified about new members.

procedure OnNewChannelMember (Connection: TsgcWSConnection; const aChannel: TsgcWSPresenceChannel;
const aMember: TsgcWSPresenceMember);

begin

end;

UnSubscriptions

// Every time a member unjoin a channel or disconnects, the server is notified by following events:

// OnRemoveChannelMember :

// Server receives a subscription request from a client to join this channel but the channel doesn't exist,
// the server can accept or not to create this channel. Use Accept parameter to allow or not this channel.
// By default all channels are accepted.

procedure OnRemoveChannelMember (Connection: TsgcWSConnection; const aChannel: TsgcWSPresenceChannel;
const aMember: TsgcWSPresenceMember);

begin
Log('Member: ' + aMember.Name + ' unjoin channel: ' + aChannel.Name);

end;

// When a member disconnects, automatically server 1is notified:

// OnRemoveMember: when the client disconnects from protocol, this event is called and server is notified of
// which never has disconnected.

procedure OnRemoveMember (aConnection: TsgcWSConnection; aMember: TsgcWSPresenceMember);
begin
Log('Member: ' + aMember.Name);
end;
Errors
// Every time there is an error, these events are called, example: server has denied a member to subscribe
// to a channel, a member try to subscribe to an already subscribed channel. ..

//0nErrorMemberChannel: this event is called every time there is an error trying to create a new channel,
// join a new member, subscribe to a channel...

procedure OnErrorMemberChannel(Connection: TsgcWSConnection; const aError: TsgcWSPresenceError;
const aChannel: TsgcWSPresenceChannel; const aMember: TsgcWSPresenceMember);

begin
Log('#Error: ' + aError.Text);

end;

// When a member disconnects, automatically server 1is notified:

// OnErrorPublishMsg: when a client publish a message and this is denied by the server, this event is raised.

procedure OnErrorPublishMsg(Connection: TsgcWSConnection; const aError: TsgcWSPresenceError;

COMPONENTS

const aMsg: TsgcWSPresenceMsg; const aChannel: TsgcWSPresenceChannel; const aMember: TsgcWSPresenceMember);
begin

Log('#Error: ' + aError.Text);
end;

COMPONENTS

TsgcWSPresenceMessage

This object encapsulates all internal messages exchange by server and client presence protocol.

TsgcWSPresenceMember

ID: internal identifier

Name: member name, provided by the client.

Info: member additional info, provided by the client.

Data: TObject which can be used for server purposes.
TsgcWSPresenceMemberList

Member[i]: member of a list by index

Count: number of members of the list

TsgcWSPresenceChannel

Name: channel name, provided by the client.

TsgcWSPresenceMsg

Text: text message, provided by the client when call Publish method

TsgcWSPresenceError

Code: integer value identifying the error
Text: error description.

COMPONENTS

TsgcWSPClient Presence

This is Server Presence Protocol Component, you need to drop this component in the form and select a TsgcWeb-
SocketClient Component using Client Property.

Properties

EncodeBase64: by default is disabled, string values are encoded in base64 to avoid problems with JSON encod-
ing.

Presence: member data

* Name: member name.
* Info: any additional info related to member (example: email, twitter, company...)

Acknowledgment: if enabled, every time a client sends a message to server assign an ID to this message and
queues in a list. When the server receives the message, if detect it has an ID, it sends an Acknowledgment to the
client, which means the server has processed message and the client can delete from the queue.

. Interval: interval in seconds where the client checks if there are messages not processed by serv-
er.
. Timeout: maximum wait time before the client sends the message again.
Methods

There are several methods to subscribe to a channel, get a list of members...

Connect

When a client connects, the first event called is OnSession, the server sends a session ID to the client, which iden-
tifies this client in the server connection list. After OnSession event is called, automatically client sends a request to
the server to join as a member, if successful, the OnNewMember event is raised

procedure OnNewMember (aConnection: TsgcWSConnection; const aMember: TsgcWSPresenceMember);
begin

Log('Connected: ' + aMember.Name);
end;

Subscriptions

When a client wants subscribe to a channel, use the method "Subscribe" and pass the channel name as argument

Client.Subscribe('MyChannel');

If the client is successfully subscribed, the OnNewChannelMember event is called. All members of this
channel will be notified using the same event.

procedure OnNewChannelMember (Connection: TsgcWSConnection; const aChannel: TsgcWSPresenceChannel;
const aMember: TsgcWSPresenceMember);

begin
Log('Subscribed: ' + aChannel.Name);

end;

COMPONENTS

if the server denies the access to a member, the OnErrorMemberChannel event is raised.

procedure OnErrorMemberChannel(Connection: TsgcWSConnection; const aError: TsgcWSPresenceError;
const aChannel: TsgcWSPresenceChannel; const aMember: TsgcWSPresenceMember)

begin

Log('Error: ' + aError.Text);
end;
Unsubscriptions

When a client unsubscribe from a channel, use method "Unsubscribe" and pass channel name as argument

Client.Unsubscribe('MyChannel");

If a client is successfully unsubscribed, the OnRemoveChannelMember event is called. All of the members of this
channel will be notified using the same event.

procedure OnRemoveChannelMember (Connection: TsgcWSConnection; const aChannel: TsgcWSPresenceChannel;
const aMember: TsgcWSPresenceMember);

begin
Log('Unsubscribed: ' + aChannel.Name);

end;

If a client can't unsubscribe from a channel, example: because is not subscribed, the OnErrorMemberChannel
event is raised.

procedure OnErrorMemberChannel(Connection: TsgcWSConnection; const aError: TsgcWSPresenceError;
const aChannel: TsgcWSPresenceChannel; const aMember: TsgcWSPresenceMember)

begin
Log('Error: ' + aError.Text);

end;

When a client disconnects from the server, the event OnRemoveEvent is called.

procedure OnRemoveMember (aConnection: TsgcWSConnection; aMember: TsgcWSPresenceMember);
begin

Log('#RemoveMember: ' + aMember.Name);
end;

Publish

When a client wants to send a message to all members or all subscribers of a channel, use the Publish method

Client.Publish('Hello All Members');

Client.Publish('Hello All Members of this channel', 'MyChannel');

If a message is successfully published, the OnPublishMsg event is called. All members of this channel will
be notified using the same event.

procedure OnPublishMsg(Connection: TsgcWSConnection; const aMsg: TsgcWSPresenceMsg;
const aChannel: TsgcWSPresenceChannel; const aMember: TsgcWSPresenceMember);
begin
Log('#PublishMsg: ' + aMsg.Text + ' ' + aMember.Name);
end;

if a message can't be published, the OnErrorPublishMsg event is raised.

procedure OnErrorPublishMsg(Connection: TsgcWSConnection; const aError: TsgcWSPresenceError;

const aMsg: TsgcWSPresenceMsg; const aChannel: TsgcWSPresenceChannel; const aMember: TsgcWSPresenceMember);
begin

Log('#Error: ' + aError.Text);
end;

COMPONENTS

GetMembers

A client can request to the server a list of all members or all members subscribed to a channel. Use the GetMem-
bers method

Client.GetMembers;

Client.GetMembers('MyChannel'");

If a message is successfully processed by the server, the OnGetMembers event is called

procedure OnGetMembers(Connection: TsgcWSConnection; const aMembers: TsgcWSPresenceMemberList;
const aChannel: TsgcWSPresenceChannel);

var
i: Integer;
begin
for i := 0 to aMembers.Count - 1 do
Log('#GetMembers: ' + aMembers.Member[i].ID + ' ' + aMembers.Member[i].Name);
end;

If there is an error because the member is not allowed or is not subscribed to channel, the OnErrorMemberChan-
nel event is raised

procedure OnErrorMemberChannel(Connection: TsgcWSConnection; const aError: TsgcWSPresenceError;
const aChannel: TsgcWSPresenceChannel;
const aMember: TsgcWSPresenceMember);

begin
Log('Error: ' + aError.Text);

end;

Invite

A client can invite to other member to subscribe to a channel.

Client.Invite('MyChannel', 'E54541DOFOE5R40F1EOOFEEA');

When the other member receives the invitation, the OnChannellnvitation event is called and member can Accept
or not the invitation.

procedure OnChannelInvitation(Connection: TsgcWSConnection; const aMember: TsgcWSPresenceMember;
const aChannel: TsgcWSPresenceChannel; var Accept: Boolean; var ErrorCode: Integer; var ErrorText: string);

begin
if aChannel = 'MyChannel' then
Accept := True
else
Accept := False;
end;

The member who sends the invitation, can know if the invitation has been accepted or not using the OnChannelin-
vitationResponse event.

procedure TForml6.PresenceClientChannelInvitationResponse(Connection: TsgcWSConnection; const aMember: TsgcWSPres
begin
if Accept then
DoLog('#invitation_accepted: [To] ' + aMember.Name + ' [Channel] ' + aChannel.Name)
else
DoLog('#invitation_cancelled: [To] ' + aMember.Name + ' [Channel] ' + aChannel.Name + ' [Error] ' + aError.Te
end;

364

COMPONENTS

Protocol Presence Javascript

Presence Protocol Javascript sgcWebSockets uses sgcWebSocket.js and presence.esegece.com.js files.

Here you can find available methods, you must replace {%host%} and {%port%} variables as needed, example: if
you have configured your sgcWebSocket server to listen port 80 on www.example.com website you need to config-
ure:

<script src="http://www.example.com:80/sgcwWebSockets.js"></script>
<script src="http://www.example.com:80/presence.esegece.com.js"></script>

Open Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/presence.esegece.com.js"></script>
<script>

var socket = new sgcws_presence('ws://{%host%}:{%port%}"');
</script>

New Member after connection

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/presence.esegece.com.js"></script>
<script>
var socket = new sgcws_presence('ws://{%host%}:{%port%}');
socket.on('sgcsession', function(event)

socket.newmember (event.id, 'John', 'Additional Info');

1)

</script>

Subscribe to Topic 1 channel

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/presence.esegece.com.js"></script>
<script>
var socket = new sgcws_presence('ws://{%host%}:{%port%}"');
socket.subscribe('Topic 1');
</script>

Unsubscribe from Topic 1 channel

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}:{%port%}/presence.esegece.com.js"></script>
<script>
var socket = new sgcws_presence('ws://{%host%}:{%port%}');
socket.unsubscribe('Topic 1');
</script>

COMPONENTS

Publish Message to Topic 1 channel

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/presence.esegece.com.js"></script>
<script>
var socket = new sgcws_presence('ws://{%host%}:{%port%}"');
socket.publish('Hello sgcWebSockets!', 'Topic 1');
</script>

Receive Message

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/presence.esegece.com.js"></script>
<script>
var socket = new sgcws_presence('ws://{%host%}:{%port%}');
socket.on('sgcpublishmsg', function(event)

{
console.log('#publishmsg: ' + event.message.text);

19N

</script>

Get All Members Connected

<script src="http://{%host%}: {%port%}/sgcwebSockets.js"></script>
<script src="http://{%host%}:{%port%}/presence.esegece.com.js"></script>
<script>
var socket = new sgcws_presence('ws://{%host%}:{%port%}');
socket.on('sgcgetmembers', function(event)
{
for (var i in event.members) {
console.log(event.members[i].id + ' ' + event.members[i].name);
}
1)
socket.getmembers();
</script>

Show Alert when Members subscribe/unsubscribe

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/presence.esegece.com.js"></script>
<script>
var socket = new sgcws_presence('ws://{%host%}:{%port%}"');
socket.on('sgcnewmember', function(event)

alert('#new member: ' + event.member.name);
}
)i

socket.on('sgcremovemember', function(event)

alert('#removed member: ' + event.member.name);
}
)i

socket.on('sgcnewchannelmember', function(event)

alert('#new member: ' + event.member.name + ' in channel: ' + event.channel.name);
}
)i

socket.on('sgcremovechannelmember', function(event)

alert('#remove member: ' + event.member.name + ' from channel: ' + event.channel.name);
}
)i

</script>

COMPONENTS

Show Alert OnConnect, OnDisconnect and OnError Events

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/presence.esegece.com.js"></script>
<script>
var socket = new sgcws_presence('ws://{%host%}:{%port%}');
socket.on('open', function(event)

alert('sgcwebSocket Open!');
sécket.on('close', function(event)
alert('sgcWebSocket Closed!');
sécket.on('sgcerrormemberchannel', function(event)

alert('#error member channel: ' + event.error.text);
}
)i

socket.on('sgcerrorpublishmsg', function(event)

alert('#error publish: ' + event.error.text);
}
)i

</script>

Close Connection

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/presence.esegece.com.js"></script>
<script>

socket.close();
</script>

367

COMPONENTS

WebSocket APIs

There are several implementations based on WebSockets: finance, message publishing, queues... sgcWebSockets
implements the most important APIs based on WebSocket protocol. In order to use an API, just attach APl compo-
nent to the client and all messages will be handled by APl component (only one APl component can be attached to
a client).

Client APIs
API Description
Binance is an international multi-language cryptocurrency exchange.

Binance Futures allows to connect to Binance Futures WebSocket / REST Market Streams.
Coinbase Coinbase is an US-based crypto exchange. Trade Bitcoin (BTC), Ethereum (ETH),
Support for WebSocket APl and REST API.

SignalR is a library for ASP.NET developers that makes developing real-time web functionali

SignalRCore ASP.NET Core SignalR is an open-source library that simplifies adding real-time we

SocketlO is.a JavaScript library for real-time web applications. It enables real-time, bi-directio
clients and servers.

Kraken is a US-based cryptocurrency exchange.

Kraken Futures allows to connect Kraken Futures WebSocket / REST Market data.

Pusher Pusher is an easy and reliable platform with flexible pub/sub messaging, live user li

FXCM also known as Forex Capital Markets, is a retail broker for trading on the foreign exc

Bl Bitfinex is one of the world's largest and most advanced cryptocurrency trading plat
Ethereum, Ripple, EOS, Bitcoin Cash, lota, NEO, Litecoin, Ethereum Classic...

Bitstamp Bitstamp is one of the world's longest standing crypto exchange, supporting the blo

Huobi is an international multi-language cryptocurrency exchange.

Cex is a cryptocurrency exchange and former Bitcoin cloud mining provider.

Cex Plus CEX.I0 Exchange Plus is the ultimate crypto trading platform that features deep lig

Bitmex is a cryptocurrency exchange and derivative trading platform.

3Commas it's a crypto trading bot.

Kucoin is a cryptocurrency exchange that allows to buy, sell, and store cryptocurrencies like

Kucoin Futures allows to connect to Kucoin Futures Servers (WebSocket and REST)

OKX formerly known as OKEYX, is one of the largest crypto spot and derivatives trading e

XTB FX and CFD trading, providing access to over +2000 financial markets.

Discord is one of the most popular communication tools for online gaming and streaming.

Bybit cryptocurrency exchange and trading platform

Blockchain Blockchain WebSocket API allows developers to receive Real-Time notifications ab

WebSocket APIs can be registered at runtime, just call Method RegisterAPI and pass APl component as a para-
meter.

Other Client APIs
API Description
Telegram is a cloud-based instant messaging and voice over IP service. Users can send messe

stickers, audio and files of any type.

COMPONENTS

Whatsapp is an internationally available American freeware, cross-platform centralized instant r
RCON is a TCP/IP-based communication protocol which allows console commands to be iss
CryptoHopper it's a crypto trading bot and portfolio manager.

CryptoRobotics it's a crypto trading robot.

Server APIs

API Description
. . RTCMulti ion is a WebRT ipt li fi -to- li

RTCMultiConnection CMu tl(.Jonnfectlon |§ a Web . C Java?crlpt ibrary for peer-to-peer applic

conferencing, file sharing, media streaming etc.)

The Web Push protocol allows web applications to send notifications to use

open or active.

WebPush

COMPONENTS

APl Binance

Binance

Binance is an international multi-language cryptocurrency exchange. It offers some APIs to access Binance data.
The following APls are supported:

1. WebSocket streams: allows to subscribe to some methods and get data in real-time. Events are pushed to
clients by server to subscribers. Uses WebSocket as protocol.
2. UserData stream: subscribed clients get account details. Requires an API key to authenticate and uses
WebSocket as protocol.
3. REST API: Requires an API Key and Secret to authenticate and uses HTTPs as protocol.
1. Market Data
2. Account and Trading Data
3. Wallet
4. Futures: WebSocket Futures Market Data Streams are supported through the Binance Futures Client API.

The client supports Binance.us too, the following APIs are supported:

1. WebSocket streams: allows to subscribe to some methods and get data in real-time. Events are pushed to
clients by server to subscribers. Uses WebSocket as protocol.

2. UserData stream: subscribed clients get account details. Requires an API key to authenticate and uses
WebSocket as protocol.

3. REST API: clients can request to server market and account data. Requires an APl Key and Secret to au-
thenticate and uses HTTPs as protocol.

Properties

Binance API has 2 types of methods: public and private. Public methods can be accessed without authentication,
example: get ticker prices. Only are only private and related to user data, those methods requires the use of Bi-
nance API keys.

+ ApiKey: you can request a new api key in your binance account, just copy the value to this property.
» ApiSecret: API secret is only required for REST_API, websocket api only requires ApiKey for some meth-
ods.
» TestNet: if enabled it will connect to Binance Demo Account (by default false).
* HTTPLogOptions: stores in a text file a log of HTTP requests
» Enabled): if enabled, will store all HTTP requests of WebSocket API.
» FileName: full path of filename where logs will be stored
+ REST: stores in a text file a log of REST API requests
+ Enabled: if enabled, will store all HTTP Requests of REST API.
» FileName: full path of filename where logs will be stored.
+ UserStream: if enabled the client will receive notifications on Account, Orders or Balance Updates (by de-
fault true).
+ BinanceUS: if enabled, will connect to Binance.us Servers (instead of Binance.com servers which is the de-
fault).
+ ListenKeyOnDisconnect: this property specifies what to do when the client disconnect from Binance
servers with an Active ListenKey.
o blkodDeleteListenKey: Delete the Active ListenKey doing an HTTP Request to Binance Servers
(this is the default).
o blkodClearListenKey: Doesn't deletes the ListenKey from Binance Servers and just clear the value
of the field.
> blkodDoNothing: does nothing, so the next time that connects to Binance will try to use the same
ListenKey.
+ UseCombinedStreams: if enabled, will combine streams as
follows: {"stream":"<streamName>","data":<rawPayload>} (by default disabled)

370

https://www.binance.com/
https://binance-docs.github.io/apidocs/spot/en/#market-data-endpoints
https://binance-docs.github.io/apidocs/spot/en/#spot-account-trade
https://binance-docs.github.io/apidocs/spot/en/#wallet-endpoints

COMPONENTS

Most common uses

e WebSockets API

* How Connect WebSocket API

 How Subscribe WebSocket Channel
e REST API

* How Get Market Data

 How Use Private REST API

¢ How Trade Spot

* Private Requests Time

¢ Withdraw

WebSocket Stream API

Base endpoint is wss://stream.binance.com:9443, client can subscribe / unsubscribe from events after a successful
connection.
The following Subscription / Unsubscription methods are supported.

Parame- o
Method Description
ters
AggregateTrades Symbol push trade information that is aggregated for a single taker order
Trades Symbol push raw trade information; each trade has a unique buyer and seller
I, In-
KLine ?eﬁ?o a push updates to the current klines/candlestick every second, minute, hour...
MiniTicker Svmbol 24hr rolling window mini-ticker statistics. These are NOT the statistics of the
y UTC day, but a 24hr rolling window for the previous 24hrs.
24hr rolling window mini-ticker statistics for all symbols that changed in an
AllMiniTickers array. These are NOT the statistics of the UTC day, but a 24hr rolling win-
dow for the previous 24hrs. Note that only tickers that have changed will be
present in the array.
Ticker Svmbol 24hr rolling window ticker statistics for a single symbol. These are NOT the
y statistics of the UTC day, but a 24hr rolling window for the previous 24hrs.
24hr rolling window ticker statistics for all symbols that changed in an array.
AllMarketTickers These are NOT the statistics of the UTC day, but a 24hr rolling window for
the previous 24hrs. Note that only tickers that have changed will be present
in the array.
BookTicker Symbol Pushgs any update to the best bid or ask's price or quantity in real-time for a
specified symbol.
AllBookTickers Pushes any update to the best bid or ask's price or quantity in real-time for
all symbols.
< > bi id < >
PartialBookDepth Symbol, Top <levels> bids and asks, pushed every second. Valid <levels> are 5, 10,
Depth or 20.
DiffDepth Symbol (?;?ELEEOK price and quantity depth updates used to locally manage an or-

After a successful subcription / unsubscription, client receives a message about it, where id is the result of Sub-
scribed / Unsubscribed method.

"result": null,
"id": 1
}

COMPONENTS

User Data Stream API

Requires a valid ApiKey obtained from your binance account, and ApiKey must be set in Binance.ApiKey property
of component.

The following data is pushed to client every time there is a change. There is no need to subscribe to any method,
this is done automatically if you set a valid ApiKey.

Method Description

Account Update Account state is updated with the outboundAccountinfo event.
Balance Update occurs during the following:

Balance Update » Deposits or withdrawals from the account

+ Transfer of funds between accounts (e.g. Spot to Margin)
Order Update Orders are updated with the executionReport event.

REST API

The base endpoint is: https://api.binance.com. All endpoints return either a JSON object or array. Data is returned
in ascending order. Oldest first, newest last.

Access to the REST API Options, using the property REST_API.BinanceOptions.

Public APl EndPoints

These endpoints can be accessed without any authorization.

General EndPoints

Method Parameters Description
Ping Test connectivity to the Rest API.
GetServerTime ;Ii'fns; connectivity to the Rest API and get the current server

GetExchangeln-

. Current exchange trading rules and symbol information
formation

Market Data EndPoints

Method Parameters Description

GetOrderBook Symbol Get Order Book.

GetTrades Symbol Get recent trades

GetHistorical- Symbol Get older trades.

Trades
Get compressed, aggregate trades. Trades that fill at the time,

GetAggregate- . . : .

Trades Symbol from the same order, with the same price will have the quantity
aggregated.

GetKLines Gyl (e P.(Ilne/cand.lestlck b.ars for a symbol. Klines are uniquely identi-
fied by their open time.

GetAver-

Symbol Current average price for a symbol.

agePrice

COMPONENTS

24 hour rolling window price change statistics. Careful when ac-
cessing this with no symbol.

GetPriceTicker Symbol Latest price for a symbol.

Latest price for an array of symbols.

Example: ['BTCUSDT","BNBUSDT"]

GetBookTicker Symbol Best price/qty on the order book for a symbol or symbols.

Get24hrTicker Symbol

GetPriceTickers Symbols

Private APl EndPoints

Requires an APIKey and APISecret to get authorized by server.

Account Data EndPoints

Method Parameters Description

NewOrder Symbol, Side, Type Send in a new order.

PlaceMarke- Side, Symbol, Quantity Places a New Market Order

tOrder

PlaceMar- Side, Symbol, QuoteOrderQt Places a New Market Quote Order

ketQuoteOrder id ’ Y

PlaceLimitOrder g::e Symbol, Quantity, Limit- Places a New Limit Order

PlaceStopOrder S|(.1e, S).lm.b0|,. Quantity, Stop- Places a New Stop Order

Price, LimitPrice

PlaceStop- Side, Symbol, Quantity, Trail- .

TrailingOrder ingDelta, LimitPrice Places a New Stop Trailing Order

Place TakeProfi- Slfie, Sym'bol,. Quantity, Stop- Places a New Take Profit Order

tOrder Price, LimitPrice

PlaceTakeProf- Side, Symbol, Quantity, Trail- L

itTrailingOrder ingDelta, LimitPrice Places a New Take ProfitTrailing Order

PlaceLimit- . . .

MakerOrder Side, Symbol, Quantity Places a New Limit Market Order
Test new order creation and signature/recvWindow long. Cre-

TestNewOrder Symbol, Side, Type ates and validates a new order but does not send it into the
matching engine.

QueryOrder Symbol Check an order's status.

CancelOrder Svmbol Cancel an active order. Cancel an active order. Either Orderld or

y OrigClientOrderld must be sent.

CancelAl- .

e Symbol (optional)

GetOpenOrders th all open orders on a symbol. Careful when accessing this
with no symbol.

GetAllOrders Symbol Get all account orders; active, canceled, or filled.

NewOCO Symbo!, Side, Quantity, Price, Send in a new OCO

StopPrice

CancelOCO Symbol Cancel an entire Order List

QueryOCO Symbol tF:irleves a specific OCO based on provided optional parame-

GetAlIOCO Retrieves all OCO based on provided optional parameters

GetOpenOCO Get All Open OCO.

GetAcF;ountIn- Get current account information.

formation

COMPONENTS

GetAccount- o
TradeList Symbol Get trades for a specific account and symbol. ’

Convert EndPoints

Method Parameters Description
Ge.tAIIConvert- FromAsset, ToAsset Query for all .co'nvertlble token pairs and the tokens’ respective
Pairs upper/lower limits
GetC rtAsset-
In?o onveriasse Query for supported asset’s precision information
SendCon- :
e R UEE FromAsset, ToAsset Request a quote for the requested token pairs
AcceptCon-
vertQuote Quoteld Accept the offered quote by quote ID.
t rt -
S;tiznve Order Orderld or Quoteld Query order status by order ID.

Enable users to place a limit order.

PlaceConvertLim- BaseAsset, QuoteAsset, Side, baseAsset or quoteAsset can be determined via exchangelnfo

. N endpoint.
itOrder LimitPrice Limit price is defined from baseAsset to quoteAsset.
Either baseAmount or quoteAmount is used.
Canc_el(_)on- Orderld Enable users to cancel a limit order
vertLimitOrder
GetC rtLimi-
tOepe:g\r/gerslml Enable users to query for all existing limit orders
(HBieSttgl?ynvertTrade- StartTime, EndTime The max interval between startTime and endTime is 30 days.

Wallet EndPoints

(*wallet endpoints only work with production server, not demo)

Method Description

GetWalletSystemStatus Fetch system status.
GetWalletAllCoinslInfor-

Get information of coins (available for deposit and withdraw) for user.

mation

Type: "SPOT", "MARGIN", "FUTURES"
GetWalletDailyAc- + The query time period must be less then 30 days
countSnapshot » Support query within the last one month only

« |f startTimeand endTime not sent, return records of the last 7 days by default

SetWalletDisableFast- This request will disable fastwithdraw switch under your account.
WithdrawSwitch You need to enable "trade" option for the api key which requests this endpoint.

This request will enable fastwithdraw switch under your account.
SetWalletEnableFast- You need to enable "trade" option for the api key which requests this endpoint.
WithdrawSwitch When Fast Withdraw Switch is on, transferring funds to a Binance account will be done in-

stantly. There is no on-chain transaction, no transaction ID and no withdrawal fee.
Submit a withdraw request.

WalletWithdraw

GetWalletDepositHistory ~ Fetch deposit history.
GetWalletWithdrawHisto-
ry

Fetch Withdraw history.

374

COMPONENTS

GetWalletDepositAd-
dress

Fetch deposit address with network.

GetWalletAccountStatus

Fetch account status detail.

GetWalletAccountAPI-
TradingStatus

Fetch account api trading status detail.

GetWalletDustlLog

Only return last 100 records
Only return records after 2020/12/01

GetWalletAssetsCon-
vertedBNB

WalletDustTransfer

Convert dust assets to BNB.
You need to openEnable Spot & Margin Trading permission for the API Key which requests
this endpoint.

GetWalletAssetDividen-
dRecord

Query asset dividend record.

GetWalletAssetDetail

Fetch details of assets supported on Binance.

GetWalletTradeFee

Fetch trade fee

WalletUserUniver-
salTransfer

You need to enable Permits Universal Transfer option for the APl Key which requests this
endpoint. MAIN_UMFUTURE Spot account transfer to USD®-M Futures account
ENUM of Type:

* MAIN_CMFUTURE Spot account transfer to COIN-M Futures account

« MAIN_MARGIN Spot account transfer to Margin (cross) account

+ UMFUTURE_MAIN USD®-M Futures account transfer to Spot account

+ UMFUTURE_MARGIN USD®-M Futures account transfer to Margin (cross) -
account
CMFUTURE_MAIN COIN-M Futures account transfer to Spot account
CMFUTURE_MARGIN COIN-M Futures account transfer to Margin(cross) account
MARGIN_MAIN Margin (cross) account transfer to Spot account
MARGIN_UMFUTURE Margin (cross) account transfer to USD®-M Futures
MARGIN_CMFUTURE Margin (cross) account transfer to COIN-M Futures
ISOLATEDMARGIN_MARGIN lIsolated margin account transfer to Margin(cross) ac-
count
*+ MARGIN_ISOLATEDMARGIN Margin(cross) account transfer to Isolated margin ac-

count

» ISOLATEDMARGIN_ISOLATEDMARGIN lIsolated margin account transfer to Isolat-
ed margin account
MAIN_FUNDING Spot account transfer to Funding account
FUNDING_MAIN Funding account transfer to Spot account
FUNDING_UMFUTURE Funding account transfer to UMFUTURE account
UMFUTURE_FUNDING UMFUTURE account transfer to Funding account
MARGIN_FUNDING MARGIN account transfer to Funding account
FUNDING_MARGIN Funding account transfer to Margin account
FUNDING_CMFUTURE Funding account transfer to CMFUTURE account
CMFUTURE_FUNDING CMFUTURE account transfer to Funding account

GetWalletQueryUserUni-
versalTransferHistory

fromSymbol must be sent when type are ISOLATEDMARGIN_MARGIN and

ISOLATEDMARGIN_ISOLATEDMARGIN

» toSymbol must be sent when type are MARGIN_ISOLATEDMARGIN and
ISOLATEDMARGIN_ISOLATEDMARGIN

» Support query within the last 6 months only

« |f startTimeand endTime not sent, return records of the last 7 days by default

GetWalletFundingWallet

Currently supports querying the following business assets : Binance Pay, Binance Card, Bi-
nance Gift Card, Stock Token

GetWalletUserAsset

Get user assets, just for positive data.

GetWalletApiKeyPermis-
sion

Events

Binance Messages are received in TsgcWebSocketClient component, you can use the following events:

375

COMPONENTS

OnConnect

After a successful connection to Binance server.
OnDisconnect

After a disconnection from Binance server
OnMessage

Messages sent by server to client are handled in this event.
OnError

If there is any error in protocol, this event will be called.
OnException

If there is an unhandled exception, this event will be called.

Additionally, there is a specific event in Binance APl Component, called OnBinanceHTTPException, which is
raised every time there is an error calling an HTTP Request (REST API or WebSocket User Stream).

(*) Due to changes in Binance Servers, Indy versions before Rad Studio 10.1, won't be able to connect to
Test Servers. This issue doesn't affect to Enterprise Edition or if the Indy version has been upgraded to lat-
est.

376

COMPONENTS

Binance | Connect WebSocket API

In order to connect to Binance WebSocket API, just create a new Binance API client and attach to TsgcWebSocket-
Client.
See below an example:

oClient := TsgcWebSocketClient.Create(nil);

oBinance := TsgcWSAPI_Binance.Create(nil);
oBinance.Client := oClient;
oClient.Active := True;

377

COMPONENTS

Binance | Subscribe WebSocket Channel

Binance offers a variety of channels where you can subscribe to get real-time updates of market data, orders...
Find below a sample of how subscribe to a Ticker:

oClient := TsgcWebSocketClient.Create(nil);
oBinance := TsgcWSAPI_Binance.Create(nil);
oBinance.Client := oClient;
oBinance.SubscribeTicker ('bnbbtc');

procedure OnMessage(Connection: TsgcWSConnection; const aText: string);
begin

// here you will receive the ticker updates

end;

378

COMPONENTS

Binance | Get Market Data

Binance offers public Market Data through REST Endpoints, when you call one of these endpoints, you will get an

snapshot of the market data requested.
The Market Data Endpoints doesn't require authentication, so are freely available to all users.

Example: to get an snapshot of the ticker BNBBTC, do the following call

oBinance := TsgCcWSAPI_Binance.Create(nil);
ShowMessage(oBinance.REST_API.GetPriceTicker ('BNBBTC'));

379

COMPONENTS

Binance | Private REST API

The Binance REST API offer public and private endpoints. The Private endpoints requires that messages signed to
increase the security of transactions.
First you must login to your Binance account and create a new API, you will get the following values:

* ApiKey
» ApiSecret

These fields must be configured in the Binance property of the Binance API client component.
Once configured, you can start to do private requests to the Binance Pro REST API

*Private Requests, require that your local machine has the local time synchronized, if not, the requests will be re-
jected by Binance server. Check the following article about this, Binance Private Requests Time.

oBinance := TsgcWSAPI_Binance.Create(nil);
oBinance.Binance.ApiKey := '<your api key>';
oBinance.Binance.ApiSecret := '<your api secret>';
ShowMessage(oBinance.REST_API.GetAccountInformation);

COMPONENTS

Binance | Trade Spot

Binance allows to trade with spot using his REST API.

Configuration

First you must create an APl Key in your binance account and add privileges to trading with Spot.

Once this is done, you can start spot trading.

First, set your ApiKey and your ApiSecret in the Binance Client Component, this will be used to sign the re-

quests sent to Binance server.

Place an Order

To place a new order, just call to method REST_APIL.NewOrder of Binance Client Component.

Depending of the type of the order (market, limit...) the APl requires more or less fields.
Mandatory Fields

» Symbol: the product id symbol, example: BNBBTC
» Side: BUY or SELL
+ type: the order type
« LIMIT
* MARKET
+ STOP_LOSS
+ STOP_LOSS_LIMIT
+ TAKE_PROFIT
+ TAKE_PROFIT_LIMIT
* LIMIT_MAKER

Additional Mandatory Fields based on Type

* LIMIT: timelnForce, quantity, price

MARKET: quantity or quoteOrderQty

STOP_LOSS / TAKE_PROFIT: quantity, stopPrice

STOP_LOSS_LIMIT / TAKE_PROFIT_LIMIT: timelnForce, quantity, price, stopPrice
LIMIT_MAKER: quantity, price

When you send an order, there are 2 possibilities:
1. Successful: the function NewOrder returns the message sent by binance server.

2. Error: the exception is returned in the event OnBinanceHT TPException.

Place Market Order 1 BNBBTC

oBinance := TsgcWSAPI_Binance.Create(nil);

oBinance.Binance.ApiKey := '<api key>';

oBinance.Binance.ApiSecret := '<api secret>';
ShowMessage(oBinance.REST_API.NewOrder('BNBBTC', 'BUY', 'MARKET', '', 1));

Place Limit Order 1 BNBBTC at 0.009260

oBinance := TsgcWSAPI_Binance.Create(nil);
oBinance.Binance.ApiKey := '<api key>';

COMPONENTS

oBinance.Binance.ApiSecret := '<api secret>';
ShowMessage(oBinance.REST_API.NewOrder('BNBBTC', 'BUY', 'LIMIT', 'GTC', 1, 0, 0.009260));

COMPONENTS

Binance | Private Requests Time

When you do a private request to Binance, the message is signed so increase the security of requests. The mes-
sage takes the local time and sends inside the signed message, if the local time has a difference greater than 5
seconds with Binance servers, the request will be rejected. So, it's important verify that your local time is synchro-
nized, you can do this using the synchronization time method for your OS.

The logic is as follows:

if (timestamp < (serverTime + 1000) && (serverTime - timestamp) <= recvWindow) {
/I process request

}else {
/I reject request

}
It is recommended to use a small recvWindow of 5000 or less! The max cannot go beyond 60000 milliseconds.

You can check the Binance server time, calling method GetServerTime, which will return the time of the Binance
server

The RecvWindow defaults to 5000, this value can be increased using the property
REST_API.BinanceOptions.RecvWindow.

COMPONENTS

Binance | Withdraw

Binance allows to use the Wallet API to submit a Withdraw request, only the followin parameters are mandatory:

» Coin

» Address

» Amount
oBinance := TsgcWSAPI_Binance.Create(nil);
oBinance.Binance.ApiKey := '<your api key>';
oBinance.Binance.ApiSecret := '<your api secret>';

ShowMessage(oBinance.REST_API.wWalletWithdraw('BTC', '7213fea8e94b4a5593d507237e5a555b', 0.25));

384

COMPONENTS

APl Binance Futures

Binance

Binance is an international multi-language cryptocurrency exchange. It offers some APIs to access Binance data.
This component allows to get Binance Futures WebSocket Market Streams.

https://binance-docs.github.io/apidocs/futures/en
https://binance-docs.github.io/apidocs/delivery/en

Futures Contracts

Binance API has 2 types of methods: public and private. Public methods can be accessed without authentication,
example: get ticker prices. Only are only private and related to user data, those methods requires the use of Bi-
nance API keys.

» ApiKey: you can request a new api key in your binance account, just copy the value to this property.
» ApiSecret: API secret is only required for REST_API, websocket api only requires ApiKey for some meth-
ods.
» TestNet: if enabled it will connect to Binance Demo Account (by default false).
* HTTPLogOptions: stores in a text file a log of HTTP requests
+ Enabled): if enabled, will store all HTTP requests of WebSocket API.
+ FileName: full path of filename where logs will be stored
* REST: stores in a text file a log of REST API requests
» Enabled: if enabled, will store all HTTP Requests of REST API.
» FileName: full path of filename where logs will be stored.
» UserStream: if enabled the client will receive notifications on Account, Orders or Balance Updates (by de-
fault true).
» ListenKeyOnDisconnect: this property specifies what to do when the client disconnect from Binance
servers with an Active ListenKey.
o blkodDeleteListenKey: Delete the Active ListenKey doing an HTTP Request to Binance Servers
(this is the default).
o blkodClearListenKey: Doesn't deletes the ListenKey from Binance Servers and just clear the value
of the field.
> blkodDoNothing: does nothing, so the next time that connects to Binance will try to use the same
ListenKey.
+ UseCombinedStreams: if enabled, will combine streams as
follows: {"stream":"<streamName>","data":<rawPayload>} (by default disabled)

Client can connect to USDT or COIN Binance Futures, set which contract you want to trade using FuturesCon-
tracts property:

* bfcUSDT: connects to USD-M Futures API.
* bfcCOIN: connects to COIN-M Futures API.

Client can connect to Production or Demo Binance accounts. If TestNet property is enabled, it will connect to Demo
account, otherwise will connect to production Binance Servers.

WebSocket Stream API

Client can subscribe / unsubscribe from events after a successful connection.
The following Subscription / Unsubscription methods are supported.

Parame-

ters Description

The Aggregate Trade Streams push trade information that is aggregated for a

AggregateTrades Symbol single taker order every 100 milliseconds.

https://www.binance.com/
https://binance-docs.github.io/apidocs/futures/en
https://binance-docs.github.io/apidocs/delivery/en
https://binance-docs.github.io/apidocs/futures/en
https://binance-docs.github.io/apidocs/delivery/en

COMPONENTS

. Symbol, Up- Mark price and funding rate for a single symbol pushed every 3 seconds or
MarkPrice
dateSpeed every second.
AllMarkPrice Update- Mark price and funding rate for all symbols pushed every 3 seconds or every
Speed second.
KLine Symbol, In- The Kline/Candlestick Stream push updates to the current klines/candlestick
terval every 250 milliseconds (if existing).
24hr rolling window mini-ticker statistics for a single symbol. These are NOT
MiniTicker Symbol the statistics of the UTC day, but a 24hr rolling window from requestTime to
24hrs before.
24hr rolling window mini-ticker statistics for all symbols. These are NOT the
AllMiniTicker statistics of the UTC day, but a 24hr rolling window from requestTime to
24hrs before. Note that only tickers that have changed will be present in the
array.
24hr rolling window ticker statistics for a single symbol. These are NOT the
Ticker Symbol statistics of the UTC day, but a 24hr rolling window from requestTime to

24hrs before.

24hr rolling window ticker statistics for all symbols. These are NOT the statis-
AllMarketTickers tics of the UTC day, but a 24hr rolling window from requestTime to 24hrs be-
fore. Note that only tickers that have changed will be present in the array.
Pushes any update to the best bid or ask's price or quantity in real-time for a
specified symbol.
Pushes any update to the best bid or ask's price or quantity in real-time for all
symbols.
The Liquidation Order Streams push force liquidation order information for
specific symbol
The All Liquidation Order Streams push force liquidation order information for
all symbols in the market.

BookTicker Symbol

AllBookTickers

LiquidationOrders Symbol

AllLiquidationOrders

PartialBookDepth gi’;&o" Top bids and asks, Valid are 5, 10, or 20.
DiffDepth Symbol Bids and asks, pushed every 250 milliseconds, 500 milliseconds, 100 mil-

liseconds or in real time(if existing)

After a successful subcription / unsubscription, client receives a message about it, where id is the result of Sub-
scribed / Unsubscribed method.

"result": null,
"id": 1
}

User Data Stream API

Requires a valid ApiKey obtained from your binance account, and ApiKey must be set in Binance.ApiKey property
of component.

The following data is pushed to client every time there is a change. There is no need to subscribe to any method,
this is done automatically if you set a valid ApiKey.

Method Description

When the user's position risk ratio is too high, this stream will be pushed. This message
is only used as risk guidance information and is not recommended for investment strate-
gies. In the case of a highly volatile market, there may be the possibility that the user's
position has been liquidated at the same time when this stream is pushed out.

Margin Call

COMPONENTS

Balance Update occurs during the following:

Balance and Position Up- » When balance or position get updated, this event will be pushed.

date « When "FUNDING FEE" changes to the user's balance.
Order Update When new order created, order status changed will push such event.
REST API

All endpoints return either a JSON object or array. Data is returned in ascending order. Oldest first, newest last.

Public APl EndPoints

These endpoints can be accessed without any authorization.

General EndPoints

Method Parameters Description
Ping Test connectivity to the Rest API.
GetServerTime :[Ii'trenset connectivity to the Rest API and get the current server

GetExchangeln-

. Current exchange trading rules and symbol information
formation

Market Data EndPoints

Method Parameters Description
GetOrderBook Symbol Get Order Book.
GetTrades Symbol Get recent trades
GetHistorical- Symbol Get older trades.
Trades
Get compressed, aggregate trades. Trades that fill at the time,
GetAggregate-
Trades Symbol from the same order, with the same price will have the quantity
aggregated.
GetKLines Syl [ame Kline/candlestick bars for a symbol. Klines are uniquely identi-

fied by their open time.
24 hour rolling window price change statistics. Careful when ac-
cessing this with no symbol.

Get24hrTicker Symbol

GetPriceTicker Symbol Latest price for a symbol or symbols.
GetBookTicker Symbol Best price/qty on the order book for a symbol or symbols.
GetMarkPrice Symbol Mark Price and Funding Rate
GetFundin-
Symbol
gRateHistory ymbo
GetOpenlnterest Symbol Get present open interest of a specific symbol.
GetOpenlinter- .
estStatistics Symbol, Period
GetTopTrader- .
AccountRatio Symbol, Period
GetTopTrader- .
PositionRatio Symbol, Period
GetGlobalAc-

countRatio Symbol, Period

COMPONENTS

GetTakerVolume Symbol, Period |

Private APl EndPoints

Requires an APIKey and APISecret to get authorized by server.

Account and Trades EndPoints

Method ~ Parameters Description
ChangePosition- " Change user's position mode (Hedge Mode or One-way Mode)
Mode DualPosition on EVERY symbol
GetCurrentPosi- Get user's position mode (Hedge Mode or One-way Mode) on
tionMode EVERY symbol
NewOrder PR, Sy [FeE TR Send in a new order.
Type
PlaceMarke- . .
{Order Side, Symbol, Quantity

PlaceLimitOrder

Side, Symbol, Quantity, Limit-
Price

Side, Symbol, Quantity, Stop-

PlaceStopOrder Price, LimitPrice
PlaceTrail- Side, Symbol, Quantity, aActi-
ingStopOrder vationPrice, aCallbackRate
QueryOrder Symbol Check an order's status.
CancelOrder Gyl Cancel an active order. Either Orderld or OrigClientOrderld
must be sent.
CancelAl-
IOpenOrders Symbol
AutoCancelAl- Gl Co BenE e Canc?efl all open orders of the specified symbol at the end of the
IOpenOrders specified countdown.
QueryCurren-
tOpenOrder Symbol
E@enOEeE Symbol th all open orders on a symbol. Careful when accessing this
with no symbol.
GetAllOrders Symbol Get all account orders; active, canceled, or filled.
GetAccountBal-
ance
GetAcF;ountIn- Get current account information.
formation
Changelnitial- e e
Symbol, Leverage Change user's initial leverage of specific symbol market.
Leverage
ChangeMargin- .
I, M T
Type Symbol, MarginType
Modifylsolated-
SRt Symbol, Amount, Type
GetPositionMar-
ginChangeHis- Symbol
tory
GetPo§|t|onIn- Gyl
formation
GetAccount- Symbol

TradeList

COMPONENTS

GetlncomeHis-
tory
GetNotional-
LeverageBrack- Symbol
et

Symbol

Events

Binance Futures Messages are received in TsgcWebSocketClient component, you can use the following events:

OnConnect

After a successful connection to Binance server.
OnDisconnect

After a disconnection from Binance server
OnMessage

Messages sent by server to client are handled in this event.
OnError

If there is any error in protocol, this event will be called.
OnException

If there is an unhandled exception, this event will be called.

Additionally, there is a specific event in Binance APl Component, called OnBinanceHTTPException, which is
raised every time there is an error calling an HTTP Request (REST API or WebSocket User Stream).

(*) Due to changes in Binance Servers, Indy versions before Rad Studio 10.1, won't be able to connect to
Test Servers. This issue doesn't affect to Enterprise Edition or if the Indy version has been upgraded to the
latest.

COMPONENTS

API Binance Futures | Trade

Binance allows to trade with futures using his REST API.

Configuration

First you must create an API Key in your binance account and add privileges to trading with Futures.

Once this is done, you can start to trading with futures.

First you must select if you want to trade with USDT or COIN futures, there is a property called FuturesContracts
where you can set which future contract you want to trade

Then, set your ApiKey and your ApiSecret in the Binance Futures Client Component, this will be used to sign the
requests sent to Binance server.

Place an Order

To place a new order, just call to method REST_APIL.NewOrder of Binance Futures Client Component.
Depending of the type of the order (market, limit...) the API requires more or less fields.
Mandatory Fields

* Symbol: the product id symbol, example: BTCUSD_210326
+ Side: BUY or SELL
+ type: the order type
« LIMIT
+ MARKET
+ STOP
+ TAKE_PROFIT
+ STOP_MARKET
+ TAKE_PROFIT_MARKET
* TRAILING_STOP_MARKET

Additional Mandatory Fields based on Type

LIMIT: timelnForce, quantity, price

MARKET: quantity

STOP/TAKE_PROFIT: quantity, price, stopPrice
STOP_MARKET/TAKE_PROFIT_MARKET: stopPrice
TRAILING_STOP_MARKET: callbackRate

When you send an order, there are 2 possibilities:

1. Successful: the function NewOrder returns the message sent by binance server.
2. Error: the exception is returned in the event OnBinanceHT TPException.

COMPONENTS

API SocketlO

SocketlO

Socket.lO is a JavaScript library for real-time web applications. It enables real-time, bi-directional communication
between web clients and servers. It has two parts: a client-side library that runs in the browser, and a server-side li-
brary for Node.js. Both components have a nearly identical API. Like Node.js, it is event-driven.

Messages Types

0: open (Sent from the server when a new transport is opened (recheck))
1: close (Request the close of this transport but does not shut down the connection itself.)
2: ping (Sent by the client. The server should answer with a pong packet containing the same data)
example
client sends: 2probe
server sends: 3probe
3: pong (Sent by the server to respond to ping packets.)
4: string message (actual message, client and server should call their callbacks with the data.)
example:
42/chat,[*join”,”{room:1}"]
4 is the message packet type in the engine.io protocol
2 is the EVENT type in the socket.io protocol
/chat is the data which is processed by socket.io
socket.io will fire the “join” event
will pass "room: 1" data. It is possible to omit namespace only when it is /.
5: upgrade (Before engine.io switches a transport, it tests, if server and client can communicate over this trans-
port. If this test succeeds, the client sends an upgrade packets which requests the server to flush its cache on the
old transport and switch to the new transport.)

6: noop (A noop packet. Used primarily to force a poll cycle when an incoming WebSocket connection is re-
ceived.)

Properties

API: specifies SocketlO version:

ioAPIO: supports socket.io 0.* servers (selected by default)

ioAPI1: supports socket.io 1.* servers

ioAPI2: supports socket.io 2.* servers

ioAPI3: supports socket.io 3.* servers

ioAPI4: supports socket.io 4.* servers
Base64: if enabled, binary messages are received as base64.
HandShakeCustomURL: allows customizing URLI to get socket.io session.

HandShakeTimestamp: only enable if you want to send timestamp as a parameter when a new session is re-
quested (enable this property if you try to access a gevent-socketio python server).

https://socket.io

COMPONENTS

Namespace: allows setting a namespace when connects to the server.
Polling: disabling this property, client will connect directly to server using websocket as transport.
Parameters: allows to set connection parameters.

EncodeParameters: if enabled, parameters are encoded.

Methods

Use WriteData method to send messages to socket.io server (following Message Types sections)
1. call method add user and one parameter with John as user name

WriteData('42["add user", "John"]');

Events

OnHTTPRequest

Before a new websocket connection is established, socket.io server requires client open a new HTTP connection to
get a new session id. In some cases, socket.io server requires authentication using HTTP headers, you can use
this event to add custom HTTP headers, like Basic authorization or Bearer token authentication.

OnAfterConnect

This event is called after socket.io connection is successful and client can send messages to server. Here you can
subscribe to namespaces for example.

OnHTTPConnectionSSL

When a WebSocket server requires secure connections, you can get an error message like this when a client tries
to connect to server:

Error connecting with SSL. error:XXXXXXXX:SSL routines:ssl3_read_bytes:tlsv1 alert protocol version

This error means that your client is trying to connect using a TLS version which is not supported by the server.

To resolve this error you must handle OnSSLAfterCreateHandler of WebSocket client component and set a newer
TLS version.

For example: here we are setting TLS 1.2 as a protocol version.

procedure TfrmWebSocketClient.SOCKETIOHTTPConnectionSSL(Sender: TObject;
aSSLHandler: TIdSSLIOHandlerSocketBase);
begin
TIdSSLIOHandlerSocketOpenSSL(aSSLHandler).SSLOptions.Method := sslvTLSvl_2;
end;

COMPONENTS

API Coinbase

Coinbase

APIs supported

+ WebSockets API: connect to a public websocket server and provides real-time market data updates.
+ REST API: The REST API has endpoints for account and order management as well as public market data.

Most common uses

 WebSockets API
* How Connect WebSocket API
e How Subscribe WebSocket Channel
« REST API
e How Get Market Data
* How Use Private REST API
How Place Orders
How Use SandBox Account
Private Requests Time

WebSockets API

The WebSocket feed is publicly available and provides real-time market data updates for orders and trades. Two
endpoints are supported in production:

+ Market Data is the feed that provides updates for both orders and trades. Most channels are now available
without authentication.
» User Order Data provides updates for the orders of the user.

You can subscribe to the following channels:

Method Arguments Description
SubscribeHeart- . . .
Beat Real-time server pings to keep all connections open

. Productld: id of th . .
SubscribeStatus Zror:ucl:c 1aotthe Sends all products and currencies on a preset interval
SubscribeCan- aProductld: id of the .

Real-time updates on product candles

dles product

. . Productld: id of th
SubscribeTicker ;ror:ucl:c 1aotihe Real-time price updates every time a match happens
SubscribeT- aProductld: id of the . . -
ickerBatch B Real-time price updates every 5000 milli-seconds

. Productld: id of th
SubscribelLevel2 ;ror:uct:c iaotthe All updates and easiest way to keep order book snapshot
subseribeMars aProductld: id of the Real-time updates every time a market trade happens
ketTrades product P Y PP

. P Id: id of th
SubscribeUser :ror::CLtICt d:id of the Only sends messages that include the authenticated user

https://www.coinbase.com/
https://docs.pro.coinbase.com/#websocket-feed
https://docs.pro.coinbase.com/#api

COMPONENTS

SubscribeFu-
turesBalance- Real-time updates every time a user's futures balance changes
Summary

The User and FuturesBalanceSummary requires authentication, so first request your API keys in your
Coinbase account and then set the values in the property Coinbase of the component:

. ApiKey
. ApiSecret

Authentication will result in a couple of benefits:
1. Messages where you're one of the parties are expanded and have more useful fields
2. You will receive private messages, such as lifecycle information about stop orders you placed

REST API

Private Endpoints

Private endpoints are available for order management, and account management.

Before being able to sign any requests, you must create an API key via the Coinbase Pro website. The API key will
be scoped to a specific profile. Upon creating a key you will have 3 pieces of information which you must remem-
ber:

+ Key
» Secret
» Passphrase

The Key and Secret will be randomly generated and provided by Coinbase Pro; the Passphrase will be provided by
you to further secure your API access. Coinbase Pro stores the salted hash of your passphrase for verification, but
cannot recover the passphrase if you forget it.

You can restrict the functionality of API keys. Before creating the key, you must choose what permissions you
would like the key to have. The permissions are:

* View - Allows a key read permissions. This includes all GET endpoints.

» Transfer - Allows a key to transfer currency on behalf of an account, including deposits and withdraws. En-
able with caution - API key transfers WILL BYPASS two-factor authentication.

» Trade - Allows a key to enter orders, as well as retrieve trade data. This includes POST /orders and several

GET endpoints.
Accounts
Method Arguments Description
ListAccounts Get a list of trading accounts from the profile of the
API key.
Information for a single account. Use this endpoint
GetAccount aAccountld: id of the account when you know the account_id. API key must belong
to the same profile as the account.
Orders
Method Arguments Description
PlaceNewOrder aIOrdc?r: class that contains all pos- Places a new order. U§e only if you need to access
sible fields of an order to advanced order options.
aSide: buy or sell
PlaceMarketOrder aProductld: id of the product Places a new Market order.

aQuoteSize: The amount of the
second Asset in the Trading Pair.

394

COMPONENTS

aBaseSize: The amount of the first
Asset in the Trading Pair
aClient_oid: Order ID selected by
you to identify your order

aSide: buy or sell

aProductld: id of the product
aQuoteSize: The amount of the
second Asset in the Trading Pair.
aBaseSize: The amount of the first
Asset in the Trading Pair
aLimitPrice: price limit

Client_oid: Order ID selected by
you to identify your order

PlaceLimitOrder

Places a new Limit order.

aSide: buy or sell

Productld: id of the product
aBaseSize: The amount of the first
Asset in the Trading Pair
StopPrice: price of the stop
aLimitPrice: price limit
aStopDirection: loss or entry
Client_oid: Order ID selected by
you to identify your order

PlaceStopOrder

Places a new Stop Order

CancelOrder aOrderld: id of the order

Cancel a previously placed order. Order must be-
long to the profile that the API key belongs to.

aOrderld: id of the order
aPrice: price
aSize: Amount

EditOrder

Edit an order with a specified new size, or new price

aOrderld: id of the order
aPrice: price
aSize: Amount

EditOrderPreview

Preview an edit order request with a specified new
size, or new price.

ListOrders

Get a list of orders filtered by optional query para-
meters (product_id, order_status, etc).

GetOrder aOrderld: id of the order

Get a single order by order ID.

PreviewOrder

Preview an order.

aOrderld: id of the order
aProductld: id of the product
aSize: amount

ClosePosition

Places an order to close any open positions for a
specified product id.

Market Data

Method
GetPublicProducts

Arguments

Description
Get a list of the available currency pairs for trading.

GetPublicProduct aProductld: id of the product

Get information on a single product by product ID.

GetPublicProduct-

Book aProductld: id of the product

Get a list of bids/asks for a single product. The
amount of detail shown can be customized with the
limit parameter.

aProductld: id of the product
aStart: start of the time interval

GetPublicProduct- aEnd: end of the time interval

Get rates for a single product by product ID,

Candles aGranularity: The timeframe each 9rouped in buckets.
candle represents.
. Get snapshot information by product ID about the
GetTrades aProductld: id of the product
b last trades (ticks) and best bid/ask.

. Get the current time from the Coinbase Advanced

GetTime
API.
Fills

COMPONENTS

Method
GetFillsByOrderid

Arguments

Description
Get a list of fills filtered by order id

GetFillsByProduc-
tid

Get a list of fills filtered by product id

GetFillsByTradeld

Get a list of fills filtered by trade id

COMPONENTS

Coinbase | Connect WebSocket API

In order to connect to Coinbase WebSocket API, just create a new Coinbase API client and attach to TsgcWeb-
SocketClient. See below an example:

oClient := TsgcWebSocketClient.Create(nil);
oCoinbase := TsgcWSAPI_Coinbase.Create(nil);
oCoinbase.Client := oClient;

oClient.Active := True;

397

COMPONENTS

Coinbase | Subscribe WebSocket Channel

Coinbase offers a variety of channels where you can subscribe to get real-time updates of market data, orders...
Find below a sample of how subscribe to a Ticker:

oClient := TsgcWebSocketClient.Create(nil);
oCoinbase := TsgcWSAPI_Coinbase.Create(nil);
oCoinbase.Client := oClient;
oCoinbase.SubscribeTicker ('ETH-USD');

procedure OnCoinbaseMessage(Sender: TObject; aType, aRawMessage: string);
begin

// here you will receive the ticker updates

end;

COMPONENTS

Coinbase Pro | Get Market Data

Coinbase offers public Market Data through REST Endpoints, when you call one of these endpoints, you will get an
snapshot of the market data requested.
The Market Data Endpoints doesn't require authentication, so are freely available to all users.

Example: to get an snapshot of the book BTC-USD, do the following call

oCoinbase := TsgcWSAPI_Coinbase.Create(nil);
ShowMessage(oCoinbase.REST_API.GetPublicProductBook('BTC-USD'));

COMPONENTS

Coinbase Pro | Private REST API

The Coinbase REST API offer public and private endpoints. The Private endpoints requires that messages signed
to increase the security of transactions.
First you must login to your Coinbase account and create a new API, you will get the following values:

* ApiKey
» ApiSecret

These fields must be configured in the Coinbase property of the Coinbase API client component.
Once configured, you can start to do private requests to the Coinbase REST API

oCoinbase := TsgcWSAPI_Coinbase.Create(nil);
oCoinbase.Coinbase.ApiKey := '<your api key>';
oCoinbase.Coinbase.ApiSecret := '<your api secret>';
ShowMessage(oCoinbase.REST_API.ListAccounts);

COMPONENTS

Coinbase Pro | Private Requests Time

When you do a private request to Coinbase, the message is signed so increase the security of requests. The mes-
sage takes the local time and sends inside the signed message, if the local time has a difference greater than 30
seconds with Coinbase servers, the request will be rejected. So, it's important verify that your local time is synchro-
nized, you can do this using the synchronization time method for your OS.

You can check the Coinbase Pro server time, calling method GetTime, which will return the time of the Coinbase
Pro server

COMPONENTS

Coinbase Pro | Place Orders

In order to place new orders in Coinbase, you require first your APls to access your private data, check the follow-
ing article How Use Private REST API.

Once you have configured your API keys, you can start to place orders
Market Order

Place a new Market Order, buy 0.002 contracts of BTC-USD

oCoinbase := TsgcWSAPI_Coinbase.Create(nil);

oCoinbase.Coinbase.ApiKey := 'your api key';

oCoinbase.Coinbase.ApiSecret := 'your api secret';
oCoinbase.Coinbase.ApiPassphrase := 'your passphrase';
ShowMessage(oCoinbase.REST_API.PlaceMarketOrder(coisBuy, 'BTC-USD', 0.002, 0));

Limit Order

Place a new Limit Order, buy 0.002 contracts of BTC-USD at price limit of 10000

oCoinbase := TsgcWSAPI_Coinbase.Create(nil);

oCoinbase.Coinbase.ApiKey := 'your api key';

oCoinbase.Coinbase.ApiSecret := 'your api secret';

oCoinbase.Coinbase.ApiPassphrase := 'your passphrase';
ShowMessage(oCoinbase.REST_API.PlaceLimitOrder (coisBuy, 'BTC-USD', 0.002, 0, 10000));

COMPONENTS

Coinbase Pro SandBox Account

Coinbase allows to use a SandBox account where you can trade without real funds. This account requires to create

API keys different from production account.
To use the SandBox account, just set Coinbase.SandBox property to true, before do any request to the REST

API.

oCoinbase := TsgcWSAPI_Coinbase.Create(nil);
oCoinbase.Coinbase.ApiKey := 'your api key';
oCoinbase.Coinbase.ApiSecret := 'your api secret';
oCoinbase.Coinbase.SandBox := True;
ShowMessage(oCoinbase.REST_API.ListAccounts);

COMPONENTS

API SignalRCore

SignalRCore

ASP.NET Core SignalR is an open-source library that simplifies adding real-time web functionality to apps. Real-
time web functionality enables server-side code to push content to clients instantly.

Good candidates for SignalR:

» Apps that require high-frequency updates from the server. Examples are gaming, social networks, voting,
auction, maps, and GPS apps.

+ Dashboards and monitoring apps. Examples include company dashboards, instant sales updates, or travel
alerts.

+ Collaborative apps. Whiteboard apps and team meeting software are examples of collaborative apps.

» Apps that require notifications. Social networks, email, chat, games, travel alerts, and many other apps use
notifications.

SignalRCore sgcWebSockets component uses WebSocket as transport to connect to a SignalRCore server, if this
transport is not supported, an error will be raised.

Hubs

SignalRCore uses hubs to communicate between clients and servers. SignalRCore provides 2 hub protocols: text
protocol based on JSON and binary protocol based on MessagePack. The sgcWebSockets component only imple-
ments JSON text protocol to communicate with SignalRCore servers.

To configure which Hub client will use, just set in SignalRCore/Hub property the name of the Hub before the client
connects to the server.

Connection

When a client opens a new connection to the server, sends a request message which contains format protocol and
version. sgcWebSockets always sends format protocol as JSON. The server will reply with an error if the protocol is
not supported by the server, this error can be handled using OnSignalRCoreError event, and if the connection is
successful, OnSignalRCoreConnect event will be called.

When a client connects to a SignalRCore server, it can send a Connectionld which identifies client between ses-
sions, so if you get a disconnection client can reconnect to server passing same prior connection id. In order to get
a new connection id, just connect normally to the server and you can know Connectionld using OnBeforeCon-
nectEvent. If you want to reconnect to the server and pass a prior connection id, use ReConnect method and
pass Connectionld as a parameter.

SignalRCore Protocol

The SignalR Protocol is a protocol for two-way RPC over any Message-based transport. Either party in the connec-
tion may invoke procedures on the other party, and procedures can return zero or more results or an error. Exam-
ple: the client can request a method from the server and server can request a method to the client. There are the
following messages exchanged between server and clients:

+ HandshakeRequest: the client sends to the server to agree on the message format.

+ HandshakeResponse: server replies to the client an acknowledgement of the previous HandshakeRequest
message. Contains an error if the handshake failed.

» Close: called by client or server when a connection is closed. Contains an error if the connection was closed
because of an error.

* Invocation: client or server sends a message to another peer to invoke a method with arguments or not.

404

https://docs.microsoft.com/en-us/aspnet/core/signalr

COMPONENTS

» Streamlnvocation: client or server sends a message to another peer to invoke a streaming method with ar-
guments or not. The Response will be split into different items.

» Streamltem: is a response from a previous StreamInvocation.

+ Completion: means a previous invocation or Streamlnvocation has been completed. Can contain a result if
the process has been successful or an error if there is some error.

» Cancellnvocation: cancel a previous StreamlInvocation request.

* Ping: is a message to check if the connection is still alive.

SignalRCore Encoding

SignalRCore allows to use the following encodings:

* JSON: currently the only supported encoding.
+ MessagePack

Currently, only JSON is supported although MessagePack can be used encoding the messages sent using an ex-
ternal messagepack library. See the section MessagePack below for more information.

The configuration of the Encoding Protocol is defined in the property SignalRCore.Protocol. By default the value
is srcpJSON.

Authorization

Authentication can be enabled to associate a user with each connection and filter which users can access to re-
sources. Authentication is implemented using Bearer Tokens, client provide an access token and server validates
this token and uses it to identify then user.

In standard Web APIs, bearer tokens are sent in an HTTP Header, but when using websockets, token is transmit-
ted as a query string parameter.

The following methods are supported:

srcaRequestToken
If Authentication is enabled, the flow is:

1. First tries to get a wvalid token from server. Opens an HTTP connection against
Authentication.RequestToken.URL and do a POST using User and Password data.

2. If previous is successful, a token is returned. If not, an error is returned.

3. If token is returned, then opens a new HTTP connection to negotiate a new connection. Here, token is passed as
an HTTP Header.

4. If previous is successful, opens a websocket connection and pass token as query string parameter.

» Authentication.Enabled: if active, authorization will be used before a websocket connection is established.

+ Authentication.Username: the username provided to server to authenticate.

+ Authentication.Password: the secret word provided to server to authenticate.

» Authentication.RequestToken.PostFieldUsername: name of field to transmit username (depends of con-
figuration, check http javascript page to see which name is used).

» Authentication.RequestToken.PostFieldPassword: name of field to transmit password (depends of con-
figuration, check http javascript page to see which name is used).

+ Authentication.RequestToken.URL: url where token is requested.

» Authentication.RequestToken.QueryFieldToken: name of query string parameter using in websocket con-
nection.

srcaSetToken
Here, you pass token directly to SignalRCore server (because token has been obtained from another server).

« Authentication.Enabled: if active, authorization will be used before a websocket connection is established.
« Authentication.SetToken.Token: token value obtained.

COMPONENTS

The Access token can be sent as a query parameter (this is the option by default) or sent as an HTTP Header as a
Bearer Token. Use the property Authentication. TokenParam to configure this behaviour.

» srctQuery: the access_token is passed in the query url of the websocket connection.
+ srctHeader: the access_token is passed as an http header as a Bearer Token.
srcaBasic

This option uses Basic Authentication, this authentication method requires to configure the SignalRCore compo-
nent and the TsgcWebSocketClient.

Example: if the server requires basic authentication and the username is "user" and the password is "secret", con-
figure the components as shown below.

// websocket client
wSClient := TsgcWebSocketClient.Create(nil);
WSClient.Authentication.Enabled := True;

wSClient.Authentication.Basic.Enabled := True;
WSClient.Authentication.URL.Enabled := False;
wSClient.Authentication.Session.Enabled := False;
wWSClient.Authentication.Token.Enabled := False;
WSClient.Authentication.User := 'user';
wSClient.Authentication.Password := 'secret';

// signalrcore
Signal := TsgcWSAPI_SignalRCore.Create(nil);

Signal.SignalRCore.Authentication.Enabled := True;
Signal.SignalRCore.Authentication.Authentication := srcaBasic;
Signal.SignalRCore.Authentication.Username := 'user';
Signal.SignalRCore.Authentication.Password := 'secret';

Signal.Client := wSClient;

Communication between Client an Server

There are three kinds of interactions between server and clients:

Invocations

The Caller sends a message to the Callee and expects a message indicating that the invocation has been complet-
ed and optionally a result of the invocation

Example: client invokes SendMessage method and passes as parameters user name and text message. Sends an
Invocation Id to
get a result message from the server.

SignalRCore.Invoke('SendMessage', ['John', 'Hello All.'], 'id-000001");

procedure OnSignalRCoreCompletion(Sender: TObject; Completion: TSignalRCore_Completion);
begin
if Completion.Error <> '' then
ShowMessage('Something goes wrong.')
else
ShowMessage('Invocation Successful!');
end;

Non-Blocking Invocations

The Caller sends a message to the Callee and does not expect any further messages for this invocation. Invoca-
tions can be sent without an Invocation ID value. This indicates that the invocation is "non-blocking".

Example: client invokes SendMessage method and passes as parameters user name and text message. The
client doesn't expect any response from the server about the result of the invocation.

COMPONENTS

SignalRCore.Invoke('SendMessage', ['John', 'Hello All.']);

Streaming Invocations

The Caller sends a message to the Callee and expects one or more results returned by the Callee followed by a
message indicating the end of invocation.

Example: client invokes Counter method and requests 10 numbers with an interval of 500 milliseconds.

SignalRCore.InvokeStream('Counter', [10, 500], 'id-000002");

procedure OnSignalRCoreStreamItem(Sender: TObject; StreamItem: TSignalRCore_StreamItem; var Cancel: Boolean);
begin

DoLog('#stream item: ' + StreamItem.Item);
end;

procedure OnSignalRCoreCompletion(Sender: TObject; Completion: TSignalRCore_Completion);
begin
if Completion.Error '' then
ShowMessage('Something goes wrong.')
else
ShowMessage('Invocation Successful!');
end;

Invocations

In order to perform a single invocation, the Caller follows the following basic flow:

procedure Invoke(const aTarget: String; const aArguments: Array of Const; const aInvocationId: String = '');
procedure InvokeStream(const aTarget: String; const aArguments: Array of Const; const aInvocationId: String);

Allocate a unique Invocation ID value (arbitrary string, chosen by the Caller) to represent the invocation. Call Invoke
or InvokeStream method containing the Target being invoked, Arguments and Invocationld (if you don't send Invo-
cationld, you won't get completion result).

If the Invocation is marked as non-blocking (see "Non-Blocking Invocations" below), stop here and immediately
yield back to the application. Handle Streamltem or Completion message with a matching Invocation ID.

SignalRCore.InvokeStream('Counter', [10, 500], 'id-000002');

procedure OnSignalRCoreStreamItem(Sender: TObject; StreamItem: TSignalRCore_StreamItem; var Cancel: Boolean);
begin
if StreamItem.InvocationId = 'id-000002' then
DoLog('#stream item: ' + StreamItem.Item);
end;

procedure OnSignalRCoreCompletion(Sender: TObject; Completion: TSignalRCore_Completion);

begin
if StreamItem.InvocationId = 'id-000002' then
begin
if Completion.Error '' then
ShowMessage('Something goes wrong.')
else
ShowMessage('Invocation Successful!');
end;
end;

You can call a single invocation and wait for completion.

function InvokeAndwWait(const aTarget: String; aArguments: Array of Const; aInvocationId: String; out Completion:
const aTimeout: Integer = 10000): Boolean;

function InvokeStreamAndwWait(const aTarget: String; const aArguments: Array of Const; const aInvocationId: String
out Completion: TSignalRCore_Completion; const aTimeout: Integer = 10000): Boolean;

Allocate a unique Invocation ID value (arbitrary string, chosen by the Caller) to represent the invocation. Call In-
vokeAndWait or InvokeStreamAndWait method containing the Target being invoked, Arguments and Invocationld.
The program will wait till completion event is called or Time out has been exceeded.

407

COMPONENTS

var
oCompletion: TSignalRCore_Completion;
begin
if SignalRCore.InvokeStreamAndwait('Counter', [10, 500], 'id-000002', oCompletion) then
DoLog('#invoke stream ok: ' + oCompletion.Result)
else
DoLog('#invocke stream error: ' + oCompletion.Error);

procedure OnSignalRCoreStreamItem(Sender: TObject; StreamItem: TSignalRCore_StreamItem; var Cancel: Boolean);

begin
if StreamItem.InvocationId = 'id-000002' then
DoLog('#stream item: ' + StreamItem.Item);
end;

Cancel Invocation

If the client wants to stop receiving Streamltem messages before the Server sends a Completion message, the
client can send a Cancellnvocation message with the same Invocationld used for the Streamlnvocation message
that started the stream.

procedure OnSignalRCoreStreamItem(Sender: TObject; StreamItem: SignalRCore_StreamItem; var Cancel: Boolean);

begin
if StreamItem.InvocationId = 'id-000002' then
Cancel := True;
end;

Client Results

An Invocation is only considered completed when the Completion message is received. If the client receives an In-
vocation from the server, OnSignalRCorelnvocation event will be called.

procedure OnSignalRCoreInvocation(Sender: TObject; Invocation: TSignalRCore_Invocation);

begin
if Invocation.Target = 'SendMessage' then
. your code here ...
end;

// Once invocation is completed, call Completion method to inform server invocation is finished.
// If result is successful, then call CompletionResult method:
SignalRCore.CompletionResult('id-000002', 'ok');

// If not, then call CompletionError method:
SignalRCore.CompletionError('id-000002', 'Error processing invocation.');

Close Connection

Sent by the client when a connection is closed. Contains an error reason if the connection was closed because of
an error.

SignalRCore.Close('Unexpected message').

// If the server close connection by any reason, OnSignalRCoreClose event will be called.
procedure OnSignalRCoreClose(Sender: TObject; Close: TSignalRCore_Close);
begin
DoLog('#closed: ' + Close.Error);
end;

Ping

The SignalR Hub protocol supports "Keep Alive" messages used to ensure that the underlying transport connection
remains active. These messages help ensure:

Proxies don't close the underlying connection during idle times (when few messages are being sent). If the underly-
ing connection is dropped without being terminated gracefully, the application is informed as quickly as possible.

408

COMPONENTS

Keep alive behaviour is achieved calling Ping method or enabling HeartBeat on WebSocket client. If the server
sends a ping to the client, the client will send automatically a response and OnSignalRCoreKeepAlive event will be
called.

procedure OnSignalRCoreKeepAlive(Sender: TObject);
begin

DoLog('#keepalive');
end;

MessagePack

In the MsgPack Encoding of the SignalR Protocol, each Message is represented as a single MsgPack array con-
taining items that correspond to properties of the given hub protocol message. The array items may be primitive
values, arrays (e.g. method arguments) or objects (e.g. argument value). The first item in the array is the message

type.

Refer to the MessagePack documentation to see how encode the messages sent.

Every time a new message is received, this is dispatched in the event OnSignalRCoreMessagePack event. The
message can be accessed reading the Data Stream parameter. The parameter JSON by default is empty, if you
convert the MessagePack message to JSON, the component will process the JSON message as if the encoding
was using JSON (so the events OnSignalRCoreCompletion, OnSignalRCorelnvocation... will be dispatched).

https://github.com/dotnet/aspnetcore/blob/main/src/SignalR/docs/specs/HubProtocol.md#messagepack-msgpack-encoding

COMPONENTS

API SignalR

SignalR

SignalR component uses WebSocket as transport to connect to a SignalR server, if this transport is not supported,
an error will be raised.
SignalR client component has a property called SignalR where you can set following data:

» Hubs: contains a list of hubs the client is subscribing to.

* ProtocolVersion: the version of the protocol used by the client, supports protocol versions from 1.2 to 1.5

* UserAgent: user agent used to connect to SignalR server.

The client supports sending Text or Binary data.

Hubs Messages

Hubs APl makes it possible to invoke server methods from the client and client methods from the server. The proto-
col used for persistent connection is not rich enough to allow expressing RPC (remote procedure call) semantics. It
does not mean however that the protocol used for hub connections is completely different from the protocol used
for persistent connections. Rather, the protocol used for hub connections is mostly an extension of the protocol for
persistent connections.

When a client invokes a server method it no longer sends a free-flow string as it was for persistent connections. In-

stead, it sends a JSON string containing all necessary information needed to invoke the method. Here is a sample
message a client would send to invoke a server method:

WriteData('{"H":"chathub", "M":"Send","A":["Delphi Client","Test message"],"I":0}');

The payload has the following properties:

| — invocation identifier — allows to match up responses with requests

H — the name of the hub

M — the name of the method

A — arguments (an array, can be empty if the method does not have any parameters)
If the string argument has double quotes replace " by \"

Example: if the argument is {"test":1}, send the argument as {\"test\":1}

WriteData('{"H":"chathub","M":"Send","A":["{\"test\":1}"],"1":0}");

Authorization

Authentication can be enabled to associate a user with each connection and filter which users can access to re-
sources. Authentication is implemented using Bearer Tokens, client provide an access token and server validates
this token and uses it to identify then user.

Currently only Bearer Tokens are supported:

Here, you pass token directly to Signal server (because token has been obtained from another server).

» Authentication.Enabled: if active, authorization will be used before a websocket connection is established.

https://www.asp.net/signalr

COMPONENTS

» Authentication.Authentication: 2 types of authentication are supported: bearer token or cookies. Both re-
quire an external way to get the required values.
o BearerToken: token value obtained.
o Cookie: set the value of the cookie required.

oSignalR := TsgcWSAPI_Signal.Create(nil);
oSignalR.SignalR.Enabled := True;
oSignalR.SignalR.Authentication := srcBearerToken;
oSignalR.SignalR.BearerToken.Token := 'token here';

The component has the following events:

OnSignalRConnect

This event is called when the client connects successfully to the server, this event is raised.

OnSignalRDisconnect

This event is called when the client is disconnected from the server, this event is raised.

OnSignalRError

This event is called when there is an error in WebSocket connection.

OnSignalRMessage

The protocol used for persistent connection is quite simple. Messages sent to the server are just raw strings. There
isn’'t any specific format they have to be in. Messages sent to the client are more structured. The properties you can
find in the message are as follows:

C — message id, present for all non-KeepAlive messages
M — an array containing actual data.

{"C":"d-9B7A6976-B,2|C, 2", "M":["Welcome!"]}

OnSignalRBinary

This event is called when binary data is received from the server.

OnSignalRResult

When a server method is invoked the server returns a confirmation that the invocation has completed by sending
the invocation id to the client and — if the method returned a value — the return value, or — if invoking the method
failed — the error.

Here are sample results of a server method call:

{IIIII:Ilon}

COMPONENTS

A server void method whose invocation identifier was "0" completed successfully.

{IIIH : ||0n, nR" :42}

A server method returning a number whose invocation identifier was "0" completed successfully and returned the
value 42.

{"1":"e", "E":"Error occurred"}

OnSignalRKeepAlive

This event is raised when a KeepAlive message is received from the server.

COMPONENTS

APl Kraken

Kraken

Overview

WebSockets API offers real-time market data updates. WebSockets is a bidirectional protocol offering fastest real-
time data, helping you build real-time applications. The public message types presented below do not require au-
thentication. Private-data messages messages can be subscribed on a separate authenticated endpoint.

Kraken offers a REST API too with Public market data and Private user data (which requires an authentication).

Configuration

Private API requires to get create an API from your Kraken account.
Kraken allows Test environment on WebSocket protocol, enable Beta property from Kraken Property to use this be-
ta feature.

APIs supported

» WebSockets Public API: connects to a public WebSocket server.

» WebSockets Private API: connects to a private WebSocket server and requires an API Key and API Secret
to Authenticate against server.

* REST Public API: connects to a public REST server.

» REST Private API: connects to a public REST server and requires an APl Key and API Secret to Authenti-
cate against server.

Kraken Examples

How Connect to Public WebSocket Server

oClient := TsgcWebSocketClient.Create(nil);
oKraken := TsgcWSAPI_Kraken.Create(nil);
oKraken.Client := oClient;

oClient.Active := True;

How Connect to Private WebSocket Server

oClient :
oKraken := TsgcWSAPI_Kraken.Create(nil);
oKraken.Kraken.ApiKey := 'your api key';
oKraken.Kraken.ApiSecret := 'your api secret';
oKraken.Client := oClient;

oClient.Active := True;

TsgcWebSocketClient.Create(nil);

How Get Ticker from REST API

oClient :
oKraken :

TsgcWebSocketClient.Create(nil);
TSgCcWSAPI_Kraken.Create(nil);

https://www.kraken.com

COMPONENTS

oKraken.Client := oClient;
ShowMessage (oKraken.GetTicker (['XBTUSD']));

How Get Account Balance from REST API

oClient := TsgcWebSocketClient.Create(nil);
oKraken := TsgcWSAPI_Kraken.Create(nil);
oKraken.Kraken.ApiKey := 'your api key';
oKraken.Kraken.ApiSecret := 'your api secret';
oKraken.Client := oClient;

ShowMessage (oKraken.GetAccountBalance());

414

COMPONENTS

API Kraken | WebSockets Public API

Connection

URL: wss://ws.kraken.com

Once the socket is open you can subscribe to a public channel by sending a subscribe request message.

General Considerations

» All messages sent and received via WebSockets are encoded in JSON format

+ All floating point fields (including timestamps) are quoted to preserve precision.

» Format of each tradeable pair is A/B, where A and B are ISO 4217-A3 for standardized assets and popular
unique symbol if not standardized.

» Timestamps should not be considered unique and not be considered as aliases for transaction ids. Also, the
granularity of timestamps is not representative of transaction rates.

Supported Pairs

ADA/CAD, ADA/ETH, ADA/EUR, ADA/USD, ADA/XBT, ATOM/CAD, ATOM/ETH, ATOM/EUR, ATOM/USD, ATOM/
XBT, BCH/EUR, BCH/USD, BCH/XBT, DASH/EUR, DASH/USD, DASH/XBT, EOS/ETH, EOS/EUR, EOS/USD,
EOS/XBT, GNO/ETH, GNO/EUR, GNO/USD, GNO/XBT, QTUM/CAD, QTUM/ETH, QTUM/EUR, QTUM/USD,
QTUM/XBT, USDT/USD, ETC/ETH, ETC/XBT, ETC/EUR, ETC/USD, ETH/XBT, ETH/CAD, ETH/EUR, ETH/GBP,
ETH/JPY, ETH/USD, LTC/XBT, LTC/EUR, LTC/USD, MLN/ETH, MLN/XBT, REP/ETH, REP/XBT, REP/EUR, REP/
USD, STR/EUR, STR/USD, XBT/CAD, XBT/EUR, XBT/GBP, XBT/JPY, XBT/USD, BTC/CAD, BTC/EUR, BTC/GBP,
BTC/JPY, BTC/USD, XDG/XBT, XLM/XBT, DOGE/XBT, STR/XBT, XLM/EUR, XLM/USD, XMR/XBT, XMR/EUR,
XMR/USD, XRP/XBT, XRP/CAD, XRP/EUR, XRP/JPY, XRP/USD, ZEC/XBT, ZEC/EUR, ZEC/JPY, ZEC/USD, XTZ/
CAD, XTZ/ETH, XTZ/EUR, XTZ/USD, XTZ/XBT

Methods
Ping

Client can ping server to determine whether connection is alive, server responds with pong.
This is an application level ping as opposed to default ping in WebSockets standard which is server initiated

Ticker

Ticker information includes best ask and best bid prices, 24hr volume, last trade price, volume weighted average
price, etc for a given currency pair. A ticker message is published every time a trade or a group of trade happens.
Subscribe to a ticker calling SubscribeTicker method:

SubscribeTicker (['XBT/USD']);

If subscription is successful, OnKrakenSubscribed event will be called:

procedure OnKrakenSubscribed(Sender: TObject;ChannelId: Integer; Pair, Subscription, ChannelName: string;
ReqID:Integer);

begin
DoLog('#subscribed: ' + Subscription + ' ' + Pair + ' ' + ChannelName);

end;

UnSubscribe calling UnSubscribeTicker method:

COMPONENTS

UnSubscribeTicker (['XBT/USD']);

If unsubscription is successful, OnKrakenUnSubscribed event will be called:

procedure OnKrakenUnSubscribed(Sender: TObject; ChannelId: Integer; Pair, Subscription: string;
ReqID: Integer);

begin
DoLog('#unsubscribed: ' + Subscription + ' ' + Pair);

end;

If there is an error while trying to subscribe / unsubscribe, OnKrakenSubscriptionError event will be called.

procedure OnKrakenSubscriptionError(Sender: TObject; ErrorMessage, Pair, Subscription: string;
ReqID: Integer);

begin
DoLog('#subscription error: ' + ErrorMessage);

end;

Ticker updates will be notified in OnKrakenData event.

nans |
"5525.40000",
1,
"1.000"
]l

iy
"5525.10000",
1,
"1.000"

g8 [l

"5525.10000",
"0.00398963"

]l

IIVII :
"2634.11501494",
"3591.17907851"

1

upu:
"5631.44067",
"5653.78939"

]r

e [
11493,
16267

]l
Illll: [
"5505.00000",
"5505.00000"
]l
i
"5783.00000",
"5783.00000"
]l
IIOII:
"5760.70000",
"5763.40000"
1
}I
"ticker",
"XBT/USD"

OHLC

When subscribed for OHLC, a snapshot of the last valid candle (irrespective of the endtime) will be sent, followed
by updates to the running candle. For example, if a subscription is made to 1 min candle and there have been no
trades for 5 mins, a snapshot of the last 1 min candle from 5 mins ago will be published. The endtime can be used
to determine that it is an old candle.

Subscribe to a OHLC calling SubscribeOHLC method, you must pass pair and interval.

COMPONENTS

SubscribeOHLC(['XBT/USD'], kinimin);

If subscription is successful, OnKrakenSubscribed event will be called:

procedure OnKrakenSubscribed(Sender: TObject;ChannelId: Integer; Pair, Subscription, ChannelName: string;
ReqID:Integer);

begin
DoLog('#subscribed: ' + Subscription + ' ' + Pair + ' ' + ChannelName);

end;

UnSubscribe calling UnSubscribeOHLC method:

UnSubscribeOHLC(['XBT/USD'], kinimin);

If unsubscription is successful, OnKrakenUnSubscribed event will be called:

procedure OnKrakenUnSubscribed(Sender: TObject; ChannelId: Integer; Pair, Subscription: string;
ReqID: Integer);

begin
DoLog('#unsubscribed: ' + Subscription + ' ' + Pair);

end;

If there is an error while trying to subscribe / unsubscribe, OnKrakenSubscriptionError event will be called.

procedure OnKrakenSubscriptionError(Sender: TObject; ErrorMessage, Pair, Subscription: string;
ReqID: Integer);

begin
DoLog('#subscription error: ' + ErrorMessage);

end;

OHLC updates will be notified in OnKrakenData event.

42,

[
"1542057314.748456",
"1542057360.435743",
"3586.70000",
""3586.70000",
"'3586.60000",
"3586.60000",
"'3586.68894",
"0.03373000",
2

]I

"ohlc-5",

"XBT/USD"

Trade

Trade feed for a currency pair.
Subscribe to Trade feed calling SubscribeTrade method.

SubscribeTrade(['XBT/USD']);

If subscription is successful, OnKrakenSubscribed event will be called:

procedure OnKrakenSubscribed(Sender: TObject;ChannelId: Integer; Pair, Subscription, ChannelName:
string; ReqID:Integer);

begin
DoLog('#subscribed: ' + Subscription + ' ' + Pair + ' ' + ChannelName);

end;

UnSubscribe calling UnSubscribeTrade method:

417

COMPONENTS

UnSubscribeTrade(['XBT/USD']);

If unsubscription is successful, OnKrakenUnSubscribed event will be called:

procedure OnrakenUnSubscribed(Sender: TObject; ChannelId: Integer; Pair, Subscription: string;
ReqID: Integer);

begin
DoLog('#unsubscribed: ' + Subscription + ' ' + Pair);

end;

If there is an error while trying to subscribe / unsubscribe, OnKrakenSubscriptionError event will be called.

procedure OnKrakenSubscriptionError(Sender: TObject; ErrorMessage, Pair, Subscription: string;
ReqID: Integer);

begin
DoLog('#subscription error: ' + ErrorMessage);

end;

Trade updates will be notified in OnKrakenData event.

"5541.20000",
"9,15850568",
"1534614057.321597",
n S n ,

nyn’

nn

"6060.00000",
"©,02455000",
"1534614057.324998",
n bll ,
l|l||
nn !
1
]l

"trade",
"XBT/USD"
1

Book

Order book levels. On subscription, a snapshot will be published at the specified depth, following the snapshot, lev-
el updates will be published.
Subscribe to a Book calling SubscribeBook method, you must pass pair and depth.

SubscribeBook(['XBT/USD'], kdel@);

If subscription is successful, OnKrakenSubscribed event will be called:

procedure OnKrakenSubscribed(Sender: TObject;Channelld: Integer; Pair, Subscription, ChannelName: string;
ReqID:Integer);

begin
DoLog('#subscribed: ' + Subscription + ' ' + Pair + ' ' + ChannelName);

end;

UnSubscribe calling UnSubscribeBook method:

UnSubscribeBook (['XBT/USD'], kdel0);

If unsubscription is successful, OnKrakenUnSubscribed event will be called:

COMPONENTS

procedure OnKrakenUnSubscribed(Sender: TObject; ChannelId: Integer; Pair, Subscription: string;
ReqID: Integer);

begin
DoLog('#unsubscribed: ' + Subscription + ' ' + Pair);

end;

If there is an error while trying to subscribe / unsubscribe, OnKrakenSubscriptionError event will be called.

procedure OnKrakenSubscriptionError(Sender: TObject; ErrorMessage, Pair, Subscription: string; ReqID: Integer);
begin

DoLog('#subscription error: ' + ErrorMessage);
end;

Book updates will be notified in OnKrakenData event.

0/
{ Ilasll : [
[
"5541.30000",
"2.50700000",
"1534614248.123678"
]I
[
"5541.80000",
"0.33000000",
"1534614098.345543"
]I
[
"5542.70000",
"0.64700000",
"1534614244.654432"
]
1l
"bS" : [
[
"5541.20000",
"1.52900000",
"1534614248.765567"
]I
[
"5539.90000",
"0.30000000",
"1534614241.769870"
]I
[
"5539.50000",
"5.00000000",
"1534613831.243486"
]
]
7
"book-100",
"XBT/USD"
]
Spread

Spread feed to show best bid and ask price for subscribed asset pair. Bid volume and ask volume is part of the
message too.
Subscribe to Spread feed calling SubscribeSpread method.

SubscribeSpread(['XBT/USD']);

If subscription is successful, OnKrakenSubscribed event will be called:

procedure OnKrakenSubscribed(Sender: TObject;ChannelId: Integer; Pair, Subscription, ChannelName: string;
ReqID:Integer);

begin
DoLog('#subscribed: ' + Subscription + ' ' + Pair + ' ' + ChannelName);

end;

COMPONENTS

UnSubscribe calling UnSubscribeSpread method:

UnSubscribeSpread(['XBT/USD']);

If unsubscription is successful, OnKrakenUnSubscribed event will be called:

procedure OnrakenUnSubscribed(Sender: TObject; Channelld: Integer; Pair, Subscription: string;
ReqID: Integer);

begin
DoLog('#unsubscribed: ' + Subscription + ' ' + Pair);

end;

If there is an error while trying to subscribe / unsubscribe, OnKrakenSubscriptionError event will be called.

procedure OnKrakenSubscriptionError(Sender: TObject; ErrorMessage, Pair, Subscription: string;
ReqID: Integer);

begin
DoLog('#subscription error: ' + ErrorMessage);

end;

Spread updates will be notified in OnKrakenData event.

"5698.40000",
"5700.00000",
"1542057299.545897",
"1.01234567",
"0.98765432"

]I

"spread",
"XBT/USD"

Other Methods

You can subscribe / unsubscribe to all channels with one method:

SubscribeAll(['XBT/USD']);

UnSubscribeAll(['XBT/USD']);

OHLC interval value is 1 if all channels subscribed.

Events

OnConnect: when websocket client is connected to client.

OnKrakenConnect: called after successful websocket connection and when server send system status.
OnKrakenSystemStatus: called when system status changes.

OnKrakenSubscribed: called after a successful subscription to a channel.

OnKrakenUnSubscribed: called after a successful unsubscription from a channel.
OnKranSubscriptionError: called if there is an error trying to subscribe / unsubscribe.

OnKrakenData: called every time a channel subscription has an update.

COMPONENTS

API Kraken | WebSockets Private API

Connection

URL: wss://ws-auth.kraken.com

Once the socket is open you can subscribe to private-data channels by sending an authenticated subscribe request
message.

Authentication

The API client must request an authentication "token" via the following REST API endpoint "GetWebSocketsToken"
to connect to WebSockets Private endpoints. The token should be used within 15 minutes of creation. The token
does not expire once a connection to a WebSockets API private message (openOrders or ownTrades) is main-
tained.

In order to get a Websockets Token, an API Key and API Secret must be set in Kraken Options Component, the api
key provided by Kraken in your account

Kraken.ApiKey := 'api key';
Kraken.ApiSecret := 'api secret';
Methods

OwnTrades

Get a list of own trades, on first subscription, you get a list of latest 50 trades

SubscribeOwnTrades();

Later, you can unsubscribe from OwnTrades, calling UnSubscribeOwnTrades method

UnSubscribeOwnTrades();

Response example from server

"TDLH43-DVQXD-2KHVYY": {
"cost": "1000000.00000",
"fee": "600.00000",
"margin": "0.00000",
"ordertxid": "TDLH43-DVQXD-2KHVYY",
"ordertype": "limit",
"pair": "XBT/EUR",
"postxid": "OGTT3Y-C6I3P-XRI6BHX",
"price": "100000.00000",
"time": "1560520332.914664",
"type" : "bUy" ,
"vol": "1000000000.00000000"

}

}
]I

"ownTrades"

]

COMPONENTS

Open Orders

Feed to show all the open orders belonging to the user authenticated API key. Initial snapshot will provide list of all
open orders and then any updates to the open orders list will be sent. For status change updates, such as 'closed’,
the fields orderid and status will be present in the payload

SubscribeOpenOrders();

Later, you can unsubscribe from OpenOrders, calling UnSubscribeOpenOrders method

UnSubscribeOpenOrders();

Response example from server

[
"OGTT3Y-C6I3P-XRIGHX": {
"cost": "0.00000",
"descr": {
"close": nu,
"leverage": "0:1",
"order": "sell 0.00001000 XBT/EUR @ limit 9.00000 with 0:1 leverage",
"ordertype": "limit",
"pair": "XBT/EUR",
"price": "9.00000",
"price2": "0.00000",
"type": "sell"

}l

"expiretm": "0.000000",

"fee": "0.00000",

"limitprice": "9.00000",

"misc": ",

"oflags": "fcib",

"opentm": "0.000000",

"price": "9.00000",

"refid": "OKIVMP-5GVZN-Z2D2UA",

"starttm": "0.000000",

"status": "open",

"stopprice": "0.000000",

"userref": 0,

"vol": "0.00001000",

"vol_exec": "0.00000000"

}
}
]I
"openOrders"
1
Add Order

Send a new Order to Kraken

oKrakenOrder := TsgcWSKrakenOrder.Create;
oKrakenOrder.Pair := 'XBT/USD';
oKrakenOrder._Type := kosBuy;
oKrakenOrder.OrderType := kotMarket;
oKrakenOrder.Volume := 1;

AddOrder (oKrakenOrder);

List of Order parameters

pair = asset pair
type = type of order (buy/sell)
ordertype = order type:
market
limit (price = limit price)
stop-loss (price = stop loss price)
take-profit (price = take profit price)
stop-loss-profit (price = stop loss price, price2 = take profit price)
stop-loss-profit-limit (price = stop loss price, price2 = take profit price)
stop-loss-limit (price = stop loss trigger price, price2 = triggered limit price)

COMPONENTS

take-profit-1limit (price = take profit trigger price, price2
trailing-stop (price = trailing stop offset)
trailing-stop-limit (price = trailing stop offset, price2 =
stop-loss-and-limit (price stop loss price, price2 = limit
settle-position
price = price (optional. dependent upon ordertype)
price2 = secondary price (optional. dependent upon ordertype)
volume = order volume in lots
leverage = amount of leverage desired (optional. default = none
oflags = comma delimited list of order flags (optional):
vigc = volume in quote currency (not available for leveraged
fcib = prefer fee in base currency
fciq = prefer fee in quote currency
nompp = no market price protection
post = post only order (available when ordertype = limit)
starttm = scheduled start time (optional):
0 = now (default)
+<n> = schedule start time <n> seconds from now
<n> = unix timestamp of start time
expiretm = expiration time (optional):
® = no expiration (default)
+<n> = expire <n> seconds from now
<n> = unix timestamp of expiration time
userref = user reference id. 32-bit signed number. (optional)
validate = validate inputs only. do not submit order (optional)
optional closing order to add to system when order gets filled:
close[ordertype] = order type
close[price] = price
close[price2] = secondary price

Response example from server

{
"descr": "buy 0.01770000 XBTUSD @ limit 4000",
"event": "addOrderStatus",
"status": "ok",
"txid": "ONPNXH-KMKMU-F4MR5V"
}

Cancel Order

Cancel order

CancelOrder('Order Id');

Response example from server

"event": "cancelOrderStatus",
"status": "ok"

}

= triggered limit price)

triggered limit offset)
price)

)

orders)

COMPONENTS

APl Kraken | REST Public API

Connection

URL: https://api.kraken.com

Kraken Public API doesn't require any authentication.

Configuration

The only configuration is enable or not a log for REST HTTP requests. Enable HTTPLogOptions if you want to save
in a text file log all HTTP Requests/Responses

Events

OnKrakenHTTPException: this event is called if there is any exception doing an HTTP Request from REST Api.

Methods

GetServerTime

This method is to aid in approximating the skew time between the server and client. Returns Time in Unix format.
{"error":[],"result":{"unixtime" :1586705546, "rfc1123":"Sun, 12 Apr 20 15:32:26 +0000"}}
GetAssets

Returns information about Assets

"error":[],"result":{"ADA":{"aclass":"currency", "altname":"ADA", "decimals":8, "display_decimals":6}}}}

GetAssetPairs
Returns information about a pair of assets

Kraken.REST_API.GetAssetPairs(['XBTUSD']);
GetTicker
Returns ticker information

Kraken.REST_API.GetTicker (['XBTUSD']);

GetOHLC

Returns Open-High-Low-Close data.

424

COMPONENTS

Kraken.REST_API.GetOHLC('XBTUSD'");
GetOrderBook
Returns Array pair name and market depth.
Kraken.REST_API.GetOrderBook('XBTUSD'");
GetTrades
Returns recent trade data of a pair.
Kraken.REST_API.GetTrades('XBTUSD');

GetSpread

Returns recent spread data of a pair.

Kraken.REST_API.GetSpread('XBTUSD'");

COMPONENTS

API Kraken | REST Private API

Connection

URL: https://api.kraken.com

Authentication

REST Private API requires an APl Key and API Secret, these values are provided by Kraken in your account.

Kraken.ApiKey := 'api key';
Kraken.ApiSecret := 'api secret';

Methods

GetAccountBalance

Returns your account balance.

Kraken.REST_API.GetAccountBalance();

GetTradeBalance

Returns information about your trades.
Kraken.REST_API.GetTradeBalance();

GetOpenOrders

Returns a list of open orders.
Kraken.REST_API.GetOpenOrders();

GetClosedOrders

Returns a list of closed orders.
Kraken.REST_API.GetClosedOrders();

QueryOrders

Query information about an order.

Kraken.REST_API.QueryOrders('1234");

COMPONENTS

GetTradesHistory

Returns an array of trade info.
Kraken.REST_API.GetTradesHistory();

QueryTrades

Query information about a trade.
Kraken.REST_API.QueryTrades('1234");

GetOpenPositions

Returns position info.
Kraken.REST_API.GetOpenPositions('1234");

GetLedgers

Returns associative array of ledgers info.
Kraken.REST_API.GetLedgers();

QuerylLedgers

Returns associative array of ledgers info.
Kraken.REST_API.QueryLedgers('1234");

GetTradeVolume

Returns trade volume info.
Kraken.REST_API.GetTradeVolume();

AddExport

Adds a new report export.
Kraken.REST_API.AddExport('Report All Trades');
ExportStatus

Get Status of reports

Kraken.REST_API.ExportStatus();

427

COMPONENTS

RetrieveExport

Get Report by report id.

Kraken.REST_API.RetrieveExport('GOCO");

RemoveExport

Remove Report by report id.
Kraken.REST_API.RemoveExport('GOCO");

Add Order

Adds a new order

pair = asset pair

type = type of order (buy/sell)

ordertype = order type:
market
limit (price = limit price)
stop-loss (price = stop loss price)
take-profit (price = take profit price)
stop-loss-profit (price = stop loss price, price2 = take profit price)
stop-loss-profit-limit (price = stop loss price, price2 = take profit price)
stop-loss-limit (price = stop loss trigger price, price2 = triggered limit price)
take-profit-1limit (price = take profit trigger price, price2 = triggered limit price)
trailing-stop (price = trailing stop offset)
trailing-stop-limit (price = trailing stop offset, price2 = triggered limit offset)
stop-loss-and-limit (price stop loss price, price2 = limit price)
settle-position

price = price (optional. dependent upon ordertype)

price2 = secondary price (optional. dependent upon ordertype)

volume = order volume in lots

leverage = amount of leverage desired (optional. default = none)

oflags = comma delimited list of order flags (optional):

vigc = volume in quote currency (not available for leveraged orders)
fcib = prefer fee in base currency
fciq = prefer fee in quote currency

nompp = no market price protection

post = post only order (available when ordertype = limit)
starttm = scheduled start time (optional):

0 = now (default)

+n = schedule start time n seconds from now

n = unix timestamp of start time
expiretm = expiration time (optional):

® = no expiration (default)

+n = expire n seconds from now

n = unix timestamp of expiration time
userref = user reference id. 32-bit signed number. (optional)
validate = validate inputs only. do not submit order (optional)
optional closing order to add to system when order gets filled:

close[ordertype] = order type

close[price] = price

close[price2] = secondary price

oKrakenOrder := TsgcHTTPKrakenOrder.Create;

oKrakenOrder.Pair := 'XBT/USD';
oKrakenOrder._Type := koshBuy;
oKrakenOrder.OrderType := kothMarket;
oKrakenOrder.Volume := 1;

Kraken.REST_API.AddOrder (oKrakenOrder);

CancelOrder

Cancels an open order by id

Kraken.REST_API.CancelOrder('1234");

COMPONENTS

APl Kraken Futures

Kraken Futures

Overview

The REST API allows to securely access the methods of your Kraken Futures account. Examples of REST API
Methods:

request current or historical price information

check your account balance and PnL

your margin parameters and estimated liquidation thresholds
place or cancel orders (individually or in batch)

* see your open orders

* open positions or trade history

* request a digital asset withdrawal

These methods are called "endpoints" and are explained in REST API section.

The Websocket API allows to securely establish a communication channel to the Kraken Futures platform to re-
ceive information in real time. This allows listening to updates instead of continuously sending requests. These
channels are called subscriptions.

Some of the endpoints allow performing sensitive tasks, such initiating a digital asset withdrawal. To access these
endpoints securely, the API uses encryption techniques developed by the National Security Agency.

Configuration

In order to use the API, you need to generate a pair of unique API keys (if you want access to private APIs):

1. Sign in to your Kraken Futures account.

2. Click on your name on the upper-right corner.

3. Select "Settings" from the drop-down menu.

4. Select the "Create Key" tab in the API panel.

5. Press the "Create Key" button.

6. View your Public and Private keys and record them somewhere safe.

Copy the Public and Private Keys to the KrakenOptions property of the component.

KrakenOptions.ApiKey
KrakenOptions.ApiSecret

APIs supported

» WebSockets Public API: connects to a public WebSocket server.

» WebSockets Private API: connects to a private WebSocket server and requires an APl Key and API Secret
to Authenticate against server.

* REST Public API: connects to a public REST server.

» REST Private API: connects to a public REST server and requires an API Key and API Secret to Authenti-
cate against server.

https://futures.kraken.com

COMPONENTS

API Kraken Futures | WebSockets Public API

Connection

URL: wss://futures.kraken.com/ws/v1

Once the socket is open you can subscribe to a public channel by sending a subscribe request message.

Methods

Ticker

This endpoint returns current market data for all currently listed Futures contracts and indices. Authentication is not

required.
Subscribe to a ticker calling SubscribeTicker method:

SubscribeTicker (['PI_XBTUSD']);

If subscription is successful, OnKrakenFuturesSubscribed event will be called:

procedure OnKrakenFuturesSubscribed(Sender: TObject; Feed, ProductId: string);
begin

DoLog('#subscribed: ' + Feed + ' ' + ProductId);
end;

UnSubscribe calling UnSubscribeTicker method:

UnSubscribeTicker (['PI_XBTUSD']);

If unsubscription is successful, OnKrakenFuturesUnSubscribed event will be called:

procedure OnKrakenFuturesUnSubscribed(Sender: TObject; Feed, ProductId: string);
begin

DoLog('#unsubscribed: ' + Feed + ' ' + ProductId);
end;

If there is an error while trying to subscribe / unsubscribe, OnKrakenFuturesError event will be called.

procedure OnKrakenFuturesError(Sender: TObject; Error: string);
begin

DoLog('#error: ' + Error);
end;

Ticker updates will be notified in OnKrakenData event.

{ "result":"success",

"tickers":[
{
"tag": "perpetual",

"pair": "XBT:USD",

COMPONENTS

"symbol": "pi_xbtusd",
"markPrice": 9520.2,

"bid": 9520,

"bidSize": 30950,

"ask": 9520.5,

"askSize": 3779,

"vol24h": 68238712,
"openinterest": 29308193,
"open24h": 10137,

"last": 9521,

"lastTime": "2020-06-03T08:14:26.624Z",
"lastSize": 1,

"suspended": false,
"fundingRate": 4.943012455e-9,

"fundingRatePrediction": 4.414499215e-9

}
{

"tag": "quarter”,

"pair": "XBT:USD",

"symbol": "fi_xbtusd_200925",
"markPrice": 9659.8,

"bid": 9659.5,

"bidSize": 6480,

"ask": 9660,

"askSize": 17100,

"vol24h": 4562580,
"openlnterest": 3573325,
"open24h": 10370.5,

"last": 9660,

"lastTime": "2020-06-03T08:10:37.800Z",
"lastSize": 5000,

"suspended": false

COMPONENTS

2

{

"symbol": "in_xbtusd",

"last": 9519,

"lastTime": "2020-06-03T08:14:49.000Z"

}

1,

"serverTime": "2020-06-03T08:14:49.865Z"

}

Trade

The trade feed returns information about executed trades
Subscribe to Trade feed calling SubscribeTrade method.

SubscribeTrade(['PI_XBTUSD']);

If subscription is successful, OnKrakenFuturesSubscribed event will be called:

procedure OnKrakenFuturesSubscribed(Sender: TObject; Feed, ProductId: string);
begin

DoLog('#subscribed: ' + Feed + ' ' + ProductId);
end;

UnSubscribe calling UnSubscribeTrade method:

UnSubscribeTrade(['PI_XBTUSD']);

If unsubscription is successful, OnKrakenFuturesUnSubscribed event will be called:

procedure OnrakenFuturesUnSubscribed(Sender: TObject; Feed, ProductId: string);
begin

DoLog('#unsubscribed: ' + Feed + ' ' + ProductId);
end;

If there is an error while trying to subscribe / unsubscribe, OnKrakenFuturesError event will be called.

procedure OnKrakenFuturesSubscriptionError(Sender: TObject; Error: string);
begin

DoLog('#error: ' + Error);
end;

Trade updates will be notified in OnKrakenData event.

{ "feed": "trade_snapshot",

"product_id": "PI_XBTUSD",

"trades": [

COMPONENTS

"feed": "trade",
"product_id": "PI_XBTUSD",

"uid": "caa9c653-420b-4c24-a9f1-462a054d86f1",

"side": "sell",
lltypell: llfi"ll,
"seq": 655508,

"time": 1612269657781,

"qty": 440,
"price": 34893
"feed": "trade",

"product_id": "PI_XBTUSD",

"uid": "45ee9737-1877-4682-bc68-e4ef818ef88a",

"side": "sell",
lltypell: llfi"ll,
"seq": 655507,

"time": 1612269656839,

"qty": 9643,
"price": 34891
]

Book

This feed returns information about the order book.

Subscribe to a Book calling SubscribeBook method, you must pass the Symbol.

SubscribeBook(['PI_XBTUSD']);

If subscription is successful, OnKrakenFuturesSubscribed event will be called:

procedure OnKrakenFuturesSubscribed(Sender: TObject; Feed, ProductId: string);

begin
DoLog('#subscribed: ' + Feed + ' ' + ProductId);
end;

COMPONENTS

UnSubscribe calling UnSubscribeBook method:

UnSubscribeBook(['PI_XBTUSD']);

If unsubscription is successful, OnKrakenFuturesUnSubscribed event will be called:

procedure OnKrakenFuturesUnSubscribed(Sender: TObject; Feed, ProductId: string);

begin

DoLog('#unsubscribed:

end;

If there is an error while trying to subscribe / unsubscribe, OnKrakenFuturesError event will be called.

procedure OnKrakenFuturesError(Sender: TObject; Error: string);

begin
DoLog('#error:
end;

Book updates will be notified in OnKrakenData event.

{

"feed": "book_snapshot",
"product_id": "PI_XBTUSD",
"timestamp": 1612269825817,

"seq": 326072249,

"tickSize": null,
"bids": [{

"price": 34892.5,
"qty": 6385

2

{

"price": 34892,
"qty": 10924

}

1,

"asks": [{
"price": 34911.5,
"gty": 20598

2

{

"price": 34912,

"qty": 2300

' + Feed + ' ' + ProductId);

434

COMPONENTS

}
]
}

Ticker Lite

The ticker lite feed returns ticker information about listed products.
Subscribe to Spread feed calling SubscribeTickerLite method.

SubscribeTickerLite(['PI_XBTUSD']);

If subscription is successful, OnKrakenFuturesSubscribed event will be called:

procedure OnKrakenFuturesSubscribed(Sender: TObject; Feed, ProductId: string);
begin

DoLog('#subscribed: ' + Feed + ' ' + ProductId);
end;

UnSubscribe calling UnSubscribeTickerLite method:

UnSubscribeTickerLite(['PI_XBTUSD']);

If unsubscription is successful, OnKrakenFuturesUnSubscribed event will be called:

procedure OnKrakenFuturesUnSubscribed(Sender: TObject; Feed, ProductId: string);
begin

DoLog('#unsubscribed: ' + Feed + ' ' + ProductId);
end;

If there is an error while trying to subscribe / unsubscribe, OnKrakenFuturesError event will be called.

procedure OnKrakenFuturesError(Sender: TObject; Error: string);
begin

DoLog('#error: ' + Error);
end;

Spread updates will be notified in OnKrakenData event.

{ "feed": "ticker_lite",

"product_id": "PI_XBTUSD",
"bid": 34932,

"ask": 34949.5,

"change": 3.3705205220015966,
"premium": 0.1,

"volume": 264126741,

"tag": "perpetual”,

"pair": "XBT:USD",

"dtm": 0,

"maturityTime": 0

COMPONENTS

}
{

"feed":"ticker _lite",
"product_id":"FI_ETHUSD_210625",
"bid":1753.45,

"ask":1760.35,
"change":13.448175559936647,
"premium":9.1,

"volume":6899673.0,
"tag":"semiannual",
"pair:"ETH:USD",

"dtm":141,

"maturityTime":1624633200000

}

HeartBeat

The heartbeat feed publishes a heartbeat message at timed intervals.

SubscribeHeartBeat();

UnSubscribeHeartBeat();

Events

OnConnect: when websocket client is connected to client.

OnKrakenFuturesConnect: called after successful websocket connection and when server send system status.
OnKrakenFuturesSubscribed: called after a successful subscription to a channel.
OnKrakenFuturesUnSubscribed: called after a successful unsubscription from a channel.
OnKrakenFuturesError: called if there is any error while subscribing/unsubscribing.

OnKrakenData: called every time a channel subscription has an update.

COMPONENTS

API Kraken Futures | WebSockets Private
API

Connection

URL: wss://futures.kraken.com/ws/v1

Authentication

The subscribe and unsubscribe requests to WebSocket private feeds require a signed challenge message with the
user api_secret.

The challenge is obtained as is shown in Section WebSocket APl Public (using the api_key).

Authenticated requests must include both the original challenge message (original_challenge) and the signed
(signed_challenge) in JSON format.

In order to get a Websockets Challenge, an APl Key and API Secret must be set in Kraken Options Component,
the api key provided by Kraken in your account

Kraken.ApiKey := 'api key';
Kraken.ApiSecret := 'api secret';
Methods

Open Orders Verbose

This subscription feed publishes information about user open orders. This feed adds extra information about all the
post-only orders that failed to cross the book.

SubscribeOpenOrdersVerbose();

Later, you can unsubscribe from OpenOrdersVerbose, calling UnSubscribeOpenOrdersVerbose method

UnSubscribeOpenOrdersVerbose();

Response example from server

{ 'feed': 'open_orders_verbose_snapshot', 'account':'0f9c23b8-63e2-40e4-9592-6d5aa57cl:
{ '"instrument':'PI_XBTUSD', '"time':1567428848005, '"last_updat

Open Positions

This subscription feed publishes the open positions of the user account.

SubscribeOpenPositions();

Later, you can unsubscribe from OpenPositions, calling UnSubscribeOpenPositions method

UnSubscribeOpenPositions();

Response example from server

437

COMPONENTS

"feed": "open_positions",

"account": "DemoUser",

"positions": [{
"instrument": "fi_xbtusd_180316",
"balance": 2000.0,
"entry_price": 11675.86541981,
"mark_price": 11090.0,
"index_price": 12290.550000000001,
"pnl": -0.00905299

3]

Account Log

This subscription feed publishes account information.

SubscribeAccountLog();

Later, you can unsubscribe from AccountLog, calling UnSubscribeAccountLog method

UnSubscribeAccountLog();

Response example from server

'feed': 'account_log_snapshot',
'logs': [{
'id': 1690,
'date': '2019-07-11T08:00:00.000Z',
'asset': 'bch',
'info': 'funding

rate change ',
booking_uid ':'
86 fdc252 - 1 h6e - 40 ec - acld - c7bd46ddeebf ','
margin_account ':'
f - bch: usd ',
old_balance ':0.01215667051,"'
new_balance ':0.01215736653, "'
old_average_entry_price ':0.0,'
new_average_entry_price ':0.0,'
trade_price ':0.0,'
mark_price ':0.0,'
realized_pnl ':0.0,'
fee ':0.0,'
execution ':'

1 1

14
collateral ':'
bch ',
funding_rate ':-8.7002552653e-08, '
realized_funding ':6.9602e-07}]

Fills

This subscription feed publishes fills information.

SubscribeFills();

Later, you can unsubscribe from Fills, calling UnSubscribeFills method

UnSubscribeFills();

COMPONENTS

Response example from server

{

"feed":"fills_snapshot",

"account":"DemoUser",

"fills™:[
{
"instrument":"FI_XBTUSD_200925",
"time":1600256910739,
"price":10937.5,
"seq":36,
"buy":true,
"qty":5000.0,
"order_id":"9e30258b-5298-4002-968a-5b0e 149bcfbf",
"fill_id":"cad76f07-814e-4dc6-8478-7867407b6bff",
"fill_type":"maker",
"fee_paid":-0.00009142857,

"fee_currency":"BTC"

1l

Open Orders

This subscription feed publishes information about user open orders.

SubscribeOpenOrders();

Later, you can unsubscribe from OpenOrders, calling UnSubscribeOpenOrders method

UnSubscribeOpenOrders();

Response example from server

{

"feed": "open_orders_snapshot",
"account": "e258dba9-4dd4-4da5-bfef-75beb91c098e",

"orders": [

{

COMPONENTS

"instrument": "PI_XBTUSD",

"time": 1612275024153,
"last_update_time": 1612275024153,
"qty": 1000,

"filled": 0,

"limit_price": 34900,

"stop_price": 13789,

"type“: "StOp",

"order_id": "723ba95f-13b7-418b-8fcf-ab7ba6620555",

"direction": 1,
"reduce_only": false,

"triggerSignal": "last"

Account Balance And Margins

This subscription feed returns balance and margin information for the client's account.

SubscribeAccountBalanceAndMargins();

Later, you can unsubscribe from AccounBalance, calling UnSubscribeAccountBalanceAndMargins method

UnSubscribeAccountBalanceAndMargins();

Response example from server

{

"feed": "account_balances_and_margins",
"account": "DemoUser",
"margin_accounts": [
{
"name": "xbt",
"balance": 0,
"pnl": 0,

"funding™: 0,

pv": 0,

COMPONENTS

"am": 0,
"im": 0,
"mm": 0
2
{

"name": "f-xbt:usd",

"balance": 9.99730211055,

"pnl": -0.00006034858674327812,
"funding": 0,

"pv": 9.997241761963258,

"am": 9.99666885201038,

"im": 0.0005729099528781564,

"mm": 0.0002864549764390782

Notifications

This subscription feed publishes notifications to the client.

SubscribeNotifications();

Later, you can unsubscribe from Notifications, calling UnSubscribeNotifications method

UnSubscribeNotifications();

Response example from server

{

"feed":"notifications_auth",
"notifications™:[
{
"id":5,

"type":"market",

"priority":"low",

COMPONENTS

"note":"A note describing the notification.",

"effective_time":1520288300000

442

COMPONENTS

API Kraken Futures | REST Public API

Connection

URL: https://futures.kraken.com/derivatives/api/v3

Kraken Futures Public API doesn't require any authentication.

Configuration

The only configuration is enable or not a log for REST HTTP requests. Enable HTTPLogOptions if you want to save
in a text file log all HTTP Requests/Responses

Events

OnKrakenHTTPException: this event is called if there is any exception doing an HTTP Request from REST Api.

Methods

GetFeeSchedules

This endpoint lists all fee schedules. Authentication is not required.

KrakenFutures.REST_API.GetFeeSchedules();

Order Book

This endpoint returns the entire non-cumulative order book of currently listed Futures contracts.

KrakenFutures.REST_API.GetOrderBook('PI_XBTUSD');

Tickers

This endpoint returns current market data for all currently listed Futures contracts and indices.

KrakenFutures.REST_API.GetTickers();

Instruments

This endpoint returns specifications for all currently listed Futures contracts and indices.

KrakenFutures.REST_API.GetInstruments();

COMPONENTS

History

This endpoint returns the last 100 trades from the specified lastTime value - if no value specified will return the last
100 trades. is endpoint only returns trade history for a maximum of 7 days from the time it is called or since
last .trading engine release (whichever is sooner).

KrakenFutures.REST_API.GetHistory('PI_XBTUSD');

444

COMPONENTS

API Kraken Futures | REST Private API

Connection

URL: https://futures.kraken.com/derivatives/api/v3

Authentication

REST Private API requires an APl Key and API Secret, these values are provided by Kraken in your account.

Kraken.ApiKey := 'api key';
Kraken.ApiSecret := 'api secret';

Methods

EditOrderByOrderid

This endpoint allows editing an existing order for a currently listed Futures contract.
aOrderld: ID of the order you wish to edit
aSize: The size associated with the order

aLimitPrice: The limit price associated with the order.
aStopPrice: The stop price associated with a stop order. Required if old Order Type is Stop.

KrakenFutures.REST_API.EditOrderByOrderId('Order_Id', 2, 1000);

EditOrderByCliOrderid

This endpoint allows editing an existing order for a currently listed Futures contract.
aCliOrderld: The order identity that is specified from the user. It must be globally unique.
aSize: The size associated with the order

aLimitPrice: The limit price associated with the order.
aStopPrice: The stop price associated with a stop order. Required if Order Type is Stop.

KrakenFutures.REST_API.EditOrderByCliOrderId('Cli_Order_Id', 2, 1000);

SendMarketOrder

This endpoint allows to send a Market Order.

aSide: The direction of the order: buy or sell.
aSymbol: The symbol of the futures
aSize: The size associated with the order.

KrakenFutures.REST_API.SendMarketOrder (kosfBuy, 'PI_XBTUSD', 1);

COMPONENTS

SendLimitOrder

This endpoint allows to send a Limit Order.

aSide: The direction of the order: buy or sell.
aSymbol: The symbol of the futures

aSize: The size associated with the order.
aLimitPrice: The limit price associated with the order.

KrakenFutures.REST_API.SendLimitOrder (kosfBuy, 'PI_XBTUSD', 1, 1000);

SendStopOrder

This endpoint allows to send a Stop Order.

aSide: The direction of the order: buy or sell.

aSymbol: The symbol of the futures

aSize: The size associated with the order.

aStopPrice: The stop price associated with a stop order.
aLimitPrice: The limit price associated with the order.

KrakenFutures.REST_API.SendStopOrder (kosfBuy, 'PI_XBTUSD', 1, 1000, 900);

SendTakeProfitOrder

This endpoint allows to send a Take Profit Order.

aSide: The direction of the order: buy or sell.

aSymbol: The symbol of the futures

aSize: The size associated with the order.

aStopPrice: The stop price associated with a stop order.
aLimitPrice: The limit price associated with the order.

KrakenFutures.REST_API.SendTakeProfitOrder(kosfBuy, 'PI_XBTUSD', 1, 1000, 900);

SendOrder

This endpoint allows sending a limit, stop, take profit or immediate-or-cancel order for a currently listed Futures
contract.

OrderType: select one of the following kotfLMT, kotfPOST, kotfMKT, kotfSTP, kotfTAKE_PROFIT, kotflOC

Symbol: The symbol of the futures

Side: The direction of the order (buy or sell).

Size: The size associated with the order.

StopPrice: The stop price associated with a stop order.

LimitPrice: The limit price associated with the order.

TriggerSignal: If placing a Stop or TakeProfit order, the signal used for trigger, select one of the following kots-
Mark, kotsIndex, kotsLast

CliOrderld: The order identity that is specified from the user. It must be globally unique.

ReduceOnly: Set as true if you wish the order to only reduce an existing position. Any order which increases an
existing position will be rejected. Default false.

oOrder := TsgcHTTPKrakenFuturesOrder.Create;
Try
oOrder.Side := kosfBuy;
oOrder.Symbol := 'PI_XBTUSD';
oOrder.OrderType := kotfMKT;
oOrder.Size := 1;
KrakenFutures.REST_API.SendOrder (oOrder);
Finally

COMPONENTS

oOrder.Free;
End;

CancelOrderByOrderld

This endpoint allows cancelling an open order for a Futures contract.

aOrderld: ID of the order you wish to edit

KrakenFutures.REST_API.CancelOrderByOrderId('Order_Id');

CancelOrderByCliOrderld

This endpoint allows cancelling an open order for a Futures contract.

aCliOrderld: The order identity that is specified from the user. It must be globally unique.

KrakenFutures.REST_API.CancelOrderByCliOrderId('Cli_Order_Id'");

GetFills

This endpoint returns information on filled orders for all futures contracts.

aLastFillDate: If not provided, returns the last 100 fills in any futures contract. If provided, returns the 100 entries
before lastFillTime.

KrakenFutures.REST_API.GetFills('2020-07-22T13:45:00.000Z");

Transfer

This endpoint allows you to transfer funds between two margin accounts with the same collateral currency, or be-
tween a margin account and your cash account.

aFromAcocunt: The name of the cash or margin account to move funds from.
aToAcocunt: The name of the cash or margin account to move funds to.
aUnit: The unit to transfer.

aAmount: The amount to transfer.

KrakenFutures.REST_API.Transfer('FI_XBTUSD', 'cash', 'xbt', 1.5);

GetOpenPositions

This endpoint returns the size and average entry price of all open positions in Futures contracts. This includes Fu-
tures contracts that have matured but have not yet been settled.

KrakenFutures.REST_API.GetOpenPositions();

GetNotifications

This endpoint provides the platform's notifications.

KrakenFutures.REST_API.GetNotifications();

447

COMPONENTS

GetAccounts

This endpoint returns key information relating to all your Kraken Futures accounts which may either be cash ac-
counts or margin accounts. This includes digital asset balances, instrument balances, margin requirements, margin
trigger estimates and auxiliary information such as available funds, PnL of open positions and portfolio value.

KrakenFutures.REST_API.GetAccounts();

CancelAllOrders

This endpoint allows cancelling an open order for a Futures contract.

Symbol: A futures product to cancel all open orders (optional)

KrakenFutures.REST_API.CancelAllOrders();

CancelAllOrdersAfter

This endpoint provides a Dead Man's Switch mechanism to protect the client from network malfunctions. The client
can send a request with a timeout in seconds which will trigger a countdown timer that will cancel all client orders
when timeout expires.

aTimeout: The timeout specified in seconds.

KrakenFutures.REST_API.CancelAllOrdersAfter(60);

GetOpenOrders

This endpoint returns information on all open orders for all Futures contracts.

KrakenFutures.REST_API.OpenOrders();

GetHistoricalOrders

This endpoint returns historical orders made on an account.

aSince: The DateTime Since

aBefore: The DateTime Before

aSort: "asc" for ascending sort "desc" for descending

aContinuationToken: Continuation token provided from a prior response which can be used in call to return the
next set of available results

KrakenFutures.REST_API.GetHistoricalOrders(Now, Now - 5);

GetHistoricalTriggers

This endpoint returns allows historical triggers made on an account.

aSince: The DateTime Since

aBefore: The DateTime Before

aSort: "asc" for ascending sort "desc" for descending

aContinuationToken: Continuation token provided from a prior response which can be used in call to return the
next set of available results

448

COMPONENTS

KrakenFutures.REST_API.GetHistoricalTriggers(Now, Now - 5);

GetHistoricalExecutions

This endpoint returns allows historical executions made on an account.

aSince: The DateTime Since

aBefore: The DateTime Before

aSort: "asc" for ascending sort "desc" for descending

aContinuationToken: Continuation token provided from a prior response which can be used in call to return the
next set of available results

KrakenFutures.REST_API.GetHistoricalExecutions(Now, Now - 5);

WithdrawalToSpotWallet

This endpoint allows submitting a request to withdraw digital assets from a Kraken Futures wallet to your Kraken
Spot wallet.

aCurrency: The digital asset that shall be withdrawn, e.g. xbt or xrp.
aAmount: The amount of currency that shall be withdrawn.

KrakenFutures.REST_API.WithdrawalToSpotWallet('xbt', 1000);

GetFeeScheduleVolumes
This endpoint returns your 30-day USD volume.
KrakenFutures.REST_API.GetFeeScheduleVvolumes();

GetAccountLogCSV

This endpoint allows clients to download a csv file of their account logs.

KrakenFutures.REST_API.GetAccountLogCSV();

COMPONENTS

APl Pusher

Pusher

Pusher it's an easy and reliable platform with nice features based on WebSocket protocol: flexible pub/sub messag-
ing, live user lists (presence), authentication...

Pusher WebSocket APl is 7.

Data is sent bi-directionally over a WebSocket as text data containing UTF8 encoded JSON (Binary WebSocket
frames are not supported).

You can call Ping method to test connection to the server. Essentially any messages received from the other party
are considered to mean that the connection is alive. In the absence of any messages, either party may check that
the other side is responding by sending a ping message, to which the other party should respond with a pong.

Before you connect, you must complete the following fields:

Pusher.Cluster := 'eu'; // cluster where is located your pusher account

Pusher.Key := '9c3b7ef25qe97a00116c'; // your pusher api key

Pusher.Name := 'js'; // optional, name of your application

Pusher.Version := '4.1'; // optional, version of your application

Pusher.TLS := True; // if encrypted, set to True

Pusher.Secret := '2dc792e1916ac49e6b3f'; // pusher secret string (needed for privateand absence channels)
Important

Pusher requires that websocket client connects to a URL using previous fields (key, cluster...), these fields are used
to build the url and this is done when you assign the client in pusher component. So, to be sure that URL is built
correctly, set the client after you have fill the pusher configuration fields. Find below pseudo-code:

// configure pusher fields
pusher.cluster = ...

pusher.key = ...

// set client

pusher.client = websocket client
// start connection

websocket client.Active = true;

After a successful connection, OnPusherConnect event is raised and you get following fields:

. Socket ID: A unique identifier for the connected client.
. Timeout: The number of seconds of server inactivity after which the client should initiate a ping message
(this is handled automatically by component).

In case of error, OnPusherError will be raised, and information about error provided. An error may be sent from
Pusher in response to invalid authentication, an invalid command, etc.

4000-4099

Indicates an error resulting in the connection being closed by Pusher, and that attempting to reconnect using
the same parameters will not succeed.

4000: Application only accepts SSL connections, reconnect using wss://
4001: Application does not exist

4003: Application disabled

4004: Application is over connection quota

4005: Path not found

4006: Invalid version string format

4007: Unsupported protocol version

https://www.pusher.com/

COMPONENTS

4008: No protocol version supplied
4100-4199

Indicates an error resulting in the connection being closed by Pusher, and that the client may reconnect after
1s or more.

4100: Over capacity
4200-4299

Indicates an error resulting in the connection being closed by Pusher, and that the client may reconnect im-
mediately.

4200: Generic reconnect immediately

4201: Pong reply not received: ping was sent to the client, but no reply was received - see ping and
pong messages

4202: Closed after inactivity: The client has been inactive for a long time (currently 24 hours) and
client does not support ping. Please upgrade to a newer WebSocket draft or implement version 5 or
above of this protocol.

4300-4399
Any other type of error.

4301: Client event rejected due to rate limit

Channels

Channels are a fundamental concept in Pusher. Each application has a number of channels, and each client can
choose which channels it subscribes to.

Channels provide:

» A way of filtering data. For example, in a chat application, there may be a channel for people who want to
discuss ‘dogs’

» A way of controlling access to different streams of information. For example, a project management applica-
tion would want to authorise people to get updates about ‘projectX’

It's strongly recommended that channels are used to filter your data and that it is not achieved using events. This is
because all events published to a channel are sent to all subscribers, regardless of their event binding.

Channels don’t need to be explicitly created and are instantiated on client demand. This means that creating a
channel is easy. Just tell a client to subscribe to it.

There are 3 types of channels:
* Public channels can be subscribed to by anyone who knows their name
» Private channels introduce a mechanism which lets your server control access to the data you are broad-
casting

* Presence channels are an extension of private channels. They let you ‘register’ user information on sub-
scription, and let other members of the channel know who’s online

Public Channels

Public channels should be used for publicly accessible data as they do not require any form authorisation in order
to be subscribed to.

You can subscribe and unsubscribe from channels at any time. There’s no need to wait for the Pusher to finish con-
necting first.

Example: subscribe to channel "my-channel".

COMPONENTS

Delphi
APIPusher.Subscribe('my-channel');

If you are subscribed successfully OnPusherSubscribe event will be raised, if there is an error you will get a mes-
sage in OnPusherError event.

All messages from the subscribed channel will be received OnPusherEvent event.

When Publish method is called and the channel is Public, the component instead of use the WebSocket protocol,
uses the HTTP protocol and calls the method TriggerEvent (publishi is not allowed using websocket protocol).

Private Channels

Requires Indy 10.5.7 or later

Private channels should be used when access to the channel needs to be restricted in some way. In order for a
user to subscribe to a private channel permission must be authorised.

Example: subscribe to channel "my-private-channel".

Delphi
APIPusher.Subscribe('my-private-channel', pscPrivateChannel);

If you are subscribed successfully OnPusherSubscribe event will be raised, if there is an error you will get a mes-
sage in OnPusherError event.

All messages from the subscribed channel will be received OnPusherEvent event.

Presence Channels

Requires Indy 10.5.7 or later

Presence channels build on the security of Private channels and expose the additional feature of an awareness of
who is subscribed to that channel. This makes it extremely easy to build chat room and “who’s online” type func-
tionality to your application. Think chat rooms, collaborators on a document, people viewing the same web page,
competitors in a game, that kind of thing.

Presence channels are subscribed to from the client APl in the same way as private channels but the channel
name must be prefixed with presence-. As with private channels an HTTP Request is made to a configurable au-
thentication URL to determine if the current user has permissions to access the channel.

Information on users subscribing to, and unsubscribing from a channel can then be accessed by binding to events
on the presence channel and the current state of users subscribed to the channel is available via the
channel.members property.

Example: subscribe to channel "my-presence-channel".

APIPusher.Subscribe('my-presence-channel', pscPresenceChannel,
'{"user_id":"John_Smith", "user_info":{"name":"John Smith"}}")

If you are subscribed successfully OnPusherSubscribe event will be raised, if there is an error you will get a mes-
sage in OnPusherError event.

COMPONENTS

All messages from the subscribed channel will be received OnPusherEvent event.

Cache Channels

A cache channel remembers the last triggered event, and sends this as the first event to new subscribers.
When an event is triggered on a cache channel, Pusher Channels caches this event, and when a client subscribes
to a cache channel, if a cached value exists, this is sent to the client as the first event on that channel. This behav-
ior helps developers to provide the initial state without adding additional logic to fetch it from else where.
The following Cache Channels are supported:

* Public Cache Channel

* Private Cache Channel

* Presence Cache Channel

Example: subscribe to public cache channel "my-cache-channel”.

APIPusher.Subscribe('my-cache-channel', pscCacheChannel);

If you are subscribed successfully OnPusherSubscribe event will be raised, if there is an error you will get a mes-
sage in OnPusherError event.

All messages from the subscribed channel will be received OnPusherEvent event.

Publish Messages

Not only you can receive messages from subscribed channels, but you can also send messages to other sub-
scribed users.
Call method Publish to send a message to all subscribed users of channel.

Example: send an event to all subscribed users of "my-channel’

APIPusher.Publish('my-event', 'my-channel');

Publish no more than 10 messages per second per client (connection). Any events triggered above this rate limit
will be rejected by Pusher API. This is not a system issue, it is a client issue. 100 clients in a channel sending mes-
sages at this rate would each also have to be processing 1,000 messages per second! Whilst some modern
browsers might be able to handle this it's most probably not a good idea.

REST API

The APl is hosted at http://api-CLUSTER.pusher.com , where CLUSTER is replaced with your own apps cluster (for
instance, eu).

HTTP status codes are used to indicate the success or otherwise of requests. The following status are common:
200 Successful request. Body will contain a JSON hash of response data

400 Error: details in response body

401 Authentication error: response body will contain an explanation

403 Forbidden: app disabled or over message quota

The following REST API functions have been implemented.

COMPONENTS

Function Description

TriggerEvent triggers a new event on the specified
channel.

GetChannels provide a list of all channels active.
GetChannel provide information of a channel.
provide a list of all users connected to
a channel.

GetUsers

Custom Authentication

Pusher only allow subscribe to private or presence channels, if the connection provides an authentication token,
this allows to restrict the access.

You can build your own Authentication flow, using OnPusherAuthentication event, this event is called before the
subscription message is signed with the secret key provided by Pusher. This event has 2 parameters a request au-
thentication with fields like Socketld, channel name... which can be used by your own authentication server to au-
thenticate or not the request. Find below a screenshot which shows the pusher authentication flow

454

COMPONENTS

Your App Server Your Web App Pusher JS Library Pusher
m [Connect to WebSocket]
: (1) var pusher =
new Pusher(‘app_key’);
>
] (2) Connect WebSocket :
>
(3) pusher:connection_established :
: (socket_id)
‘socket_id’ is
unique for
each socket
m [Subscribe to Channel]
‘ (4) pusher.subscribe
(‘private-channel) :
: >
: (5) http://yourapp/pusher/auth :
(channel_name, socket_id, [callback])
< :
: (6) JSON: {“auth”:"key:signature”} :
.. }
: (7) pusher:subscribe
(channel_name, key:signature) :
>
Your App Server Your Web App Pusher JS Library Pusher

When a client connects to the pusher server, it sends the Key provided by pusher and the server returns an identifi-
cation id (socket_id).

When a client subscribes to a private (or presence) channel, the sgcWebSockets client uses the Secret Key provid-
ed by pusher to create a signature which is included in the subscription message. Using the OnPusherAutentication
event, you can capture the fields required to sign the message, implement your own authentication methods and if
successful, return the signature and this signature will be included in the subscription message and sent to the
server.

Example:

oClient := TsgcWebSocketClient.Create(nil);
oPusher := TsgcWSAPI_Pusher.Create(nil);
oPusher.Client := oClient;

oPusher.Cluster := 'eu';

Pusher.Name := 'js';

Pusher.Version := '4.1';

Pusher.TLS := True;

Pusher.Key := '9c3b7ef25qe97a00116¢c';

Pusher.Secret := ''; // the secret key is not known by the client, only by the authentication module

oPusher.OnPusherAuthentication := OnPusherAuthenticationEvent;

COMPONENTS

procedure OnPusherAuthenticationEvent(Sender: TObject; AuthRequest: TsgcWSPusherRequestAuthentication;
AuthResponse: TsgcWSPusherResponseAuthentication);
begin
// 1f the authentication request is succesful return the signature
if CustomAuthentication(AuthRequest.Channel, AuthRequest.SocketID) then
AuthResponse.Signature := GetCustomAuthenticationSignature;
end;

The format of the signature is:

Private channels: key:HMAC256(Socket|D, ChannelName)
Presence channels: key: HMAC256(SocketID, ChannelName, Data)

COMPONENTS

API Bitmex

Bitmex

Is a cryptocurrency exchange and derivative trading platform.
The following APls are supported:

1. WebSocket streams: allows to subscribe to some methods and get data in real-time. Events are pushed to
clients by server to subscribers. Uses WebSocket as protocol.

2. REST API: clients can request to server market and account data. Requires an API Key and Secret to au-
thenticate and uses HTTPs as protocol.

Properties

Bitmex API has 2 types of methods: public and private. Public methods can be accessed without authentication, ex-
ample: get ticker prices. Only are only private and related to user data, those methods requires the use of Bitmex
API keys.

ApiKey: you can request a new api key in your Bitmex account, just copy the value to this property.
ApiSecret: it's the secret of the API, keep safe.
TestNet: if enabled it will connect to Bitmex Demo Account (by default false).
HTTPLogOptions: stores in a text file a log of HTTP requests
» Enabled: if enabled, will store all HTTP requests of WebSocket API.
» FileName: full path of filename where logs will be stored

Most common uses

e WebSockets API

e How Connect WebSocket API

¢ How Subscribe WebSocket Channel
« REST API

 How Place Bitmex Order

WebSocket API

Subscribe / Unsubscribe

BitMEX allows subscribing to real-time data. This access is not rate-limited once connected and is the best
way to get the most up-to-date data to your programs. In some topics, you can pass a Symbol to filter events
by symbol, example: trades, quotes...

The following subscription topics are available without authentication:

btmAnnouncement: Site Announcements

btmChat: Trollbox chat

btmConnected: Statistics of connected users/bots

btmFunding: Updates of swap funding rates. Sent every funding interval (usually 8hrs)
btmInstrument: Instrument updates including turnover and bid/ask

btmlInsurance: Daily Insurance Fund updates

btmLiquidation: Liquidation orders as they're entered into the book
btmOrderBookL2_25: Top 25 levels of level 2 order book

btmOrderBookL2: Full level 2 order book

btmOrderBook10: Top 10 levels using traditional full book push

457

https://www.bitmex.com

COMPONENTS

. btmPublicNotifications: System-wide notifications (used for short-lived messages)
. btmQuote: Top level of the book

. btmQuoteBin1m: 1-minute quote bins
. btmQuoteBin5m: 5-minute quote bins
. btmQuoteBin1h: 1-hour quote bins

. btmQuoteBin1d: 1-day quote bins

. btmSettlement: Settlements

. btmTrade: Live trades

. btmTradeBin1m: 1-minute trade bins
. btmTradeBin5m: 5-minute trade bins
. btmTradeBin1h:1-hour trade bins

. btmTradeBin1d: 1-day trade bins

The following subjects require authentication:

. btmAffiliate: Affiliate status, such as total referred users & payout %

. btmExecution: Individual executions; can be multiple per order

. btmOrder: Live updates on your orders

. btmMargin: Updates on your current account balance and margin requirements
. btmPosition: Updates on your positions

. btmPrivateNotifications: Individual notifications - currently not used

. btmTransact: Deposit/Withdrawal updates

. btmWallet: Bitcoin address balance data, including total deposits & withdrawals

Example of messages received:

{

"table":"orderBookL2_25",

n keyS" : [nsymbolll , W)@ , "Side"] ,

"types":{"id":"long", "price":"float", "side":"symbol", "size":"long", "symbol":"symbol"}

"foreignKeys":{"side":"side","symbol":"instrument"},

"attributes":{"id":"sorted", "symbol":"grouped"},

"action":"partial",

"data": [
{"symbol":"XBTUSD", "id":17999992000, "side":"Sell", "size":100, "price":80},
{"symbol":"XBTUSD", "id":17999993000, "side":"Sell", "size":20, "price":70},
{"symbol":"XBTUSD", "id":17999994000, "side" :"Sell", "size":10, "price":60},
{"symbol":"XBTUSD","id":17999995000, "side":"Buy", "size":10, "price":50},
{"symbol":"XBTUSD", "id":17999996000, "side" :"Buy", "size":20, "price":40},
{"symbol":"XBTUSD", "id":17999997000, "side":"Buy", "size":100, "price":30}

1

}
¢ "table":"orderBookL2_ 25",

"action":"update",

"data": [

{"symbol":"XBTUSD", "id":17999995000, "side" :"Buy", "size":5}

1

}
{

"table":"orderBookL2_25",

"action":"delete",

"data": [

{"symbol":"XBTUSD", "id":17999995000, "side":"Buy"}

1

3
{

"table":"orderBookL2_25",

"action":"insert",

"data": [
{"symbol":"XBTUSD", "id":17999995500, "side" :"Buy", "size":10, "price":45},

]

}
Authentication

If you wish to subscribe to user-locked streams, you must authenticate first. Note that invalid authentication
will close the connection.

BitMEX API usage requires an API Key.

COMPONENTS

Permanent APl Keys can be locked to IP address ranges and revoked at will without compromising your
main credentials. They also do not require renewal.

To use API Key auth, you must generate an API Key in your account.

Cal method Authenticate before subscribe to any Authenticated Topic.

REST API

Method Description

G . This returns all raw transactions, which includes order opening and cancela-
etExecutions .
tion, and order status changes.
S_etExecutlonsTrade- This returns more focused Transactions.
istory
This returns all instruments and indices, including those that have settled or are
Getlnstruments unlisted. Use this endpoint if you want to query for individual instruments or use
a complex filter.
GetOrders To get open orders only
PlaceOrder Place a raw order using TsgcHTTPBitmexOrder object.
PlaceMarketOrder Place a new MARKET order.
PlaceLimitOrder Place a new LIMIT order.
PlaceStopOrder Place a new STOP order.
